
	 1

Computational Linguistics and Intellectual Technologies:
Proceedings of the International Conference “Dialogue 2019”

Moscow, May 29—June 1, 2019

FILLING THE GAPS WITH
RULES AND NETWORKS1

Sorokin A. A. (alexey.sorokin@list.ru)
Moscow Institute of Physics and Technology, Neural Networks and
Deep Learning Lab, Dolgoprudny, Russia; Moscow State University,
Faculty of Mathematics and Mechanics, Moscow, Russia

In this paper we describe rule-based and neural approaches to gapping res-
olution task for Russian language. Our study was conducted on the material
of AGRR-2019 Shared Task. We demonstrate that neural model definitively
outperforms the rule-based one even when only 2000 annotated sentences
are available. The rule-based model took the 6th place in AGRR-2019 com-
petition (2nd in terms of precision), while the neural one was better than the
second-ranked system2.

Keywords: Gapping, ellipsis, automatic gapping resolution, neural networks

ПРАВИЛОВЫЕ И НЕЙРОННЫЕ
МОДЕЛИ ДЛЯ ГЭППИНГА

Сорокин А. А. (alexey.sorokin@list.ru)
Московский Физико-технический Институт, Лаборатория
нейронных систем и глубокого обучения, Долгопрудный, Россия;
Московский Государственный Университет,
механико‑математический факультет, Москва, Россия

Данная работа посвящена автоматическому распознаванию гэппинга.
Мы показываем, что нейросетевой подход к этой задаче более эффек-
тивен в сравнении с правиловым, в том числе на обучающей выборке не-
большого размера. Наша нейросетевая модель показала качество выше
второго результата в соревновании AGRR-20193, в то время как правило-
вая модель заняла шестое место, показав при этом вторую точность.

Ключевые слова: гэппинг, автоматическое распознавание гэппинга,
эллипсис, семантический парсинг

1	 The research was conducted under support of National Technological Initiative Foundation
and Sberbank of Russia. Project identifier 0000000007417F630002.

2	 The neural model was submitted two weeks after the end of AGRR-2019 competition when
all the gold answers and the systems of other participants were available.

3	 Данный результат был получен после завершения соревнования.

Sorokin A. A.﻿﻿﻿﻿

2�

1.	 Introduction

In linguistics, gapping is a type of ellipsis that occurs in the non-initial conjuncts
of coordinate structures [11], [2]. The elided material usually includes the finite verb
as well as some of its dependents. For example, in the sentence Маша любит чай,
а Петя кофе. (Mary likes tee and Peter coffee), the elided segment consists of the main
verb любит (likes). Identifying the presence/absence of gaps and their resolution
is important in Natural Language Understanding. For example, consider the sentence

(1)	 Президентом Ирака стал Бакр, а вице‑президентом — Саддам Хуссейн.
Bakr became the president of Iraq and Saddam Hussein the vice-president.

To extract the semantic structure of this sentence and transform it, e. g., to Wiki-
data-like triples object-relation-subject, a system must restore the missing verb стал
(became). The extracted triples can be useful, for example, for question answering
or information retrieval.

Gapping has attracted high attention in theoretical linguistics [11], [8], [9], how-
ever, there are only a few works that investigate gapping in computational literature
[14], [5], [6], [7], [15]. Moreover, none of this works address this problem in modern
NLP paradigm, where large amounts either of labeled or unlabeled data are utilized.
The main obstacle is the lack of datasets: even large existing treebanks contain not more
than several hundreds of gapping examples. The only exception is Automatic Gapping
Resolution for Russian Shared Task (AGRR-2019) [16] https://github.com/dialogue-
evaluation/AGRR-2019, which provides more than 16,000 sentences in total for training
and development. Our system was submitted to participate in this competition and the
present work describes the model, as well as the results of its application to the dataset.

The paper consists of the following parts: Section 2 describes the task and the da-
taset. Section 3 describes the pipeline and our initial rule-based model. Section 4 de-
scribes the neural model and Section 5 is devoted to its training. Section 6 is devoted
to data pre- and postprocessing, Section 7 measures the quality of our models as well
as their individual parts. In Section 8 we conclude with the directions for future work.

2.	 Task description

AGRR-2019 organizers postulate gapping resolution task as follows: given a raw
sentence
(2)	 Президентом Ирака стал Бакр, а вице‑президентом — Саддам Хуссейн.

Bakr became the president of Iraq and Saddam Hussein the vice-president.

detect:
1.	� Whether the sentence contains a gap (binary presence-absence task in orga-

nizers’ terms).
2.	� [item:pos] The position of this gap. The annotation standards located it im-

mediately to the left of the first symbol of right core argument Саддам Хус‑
сейн. Naively it seems more natural to treat the hyphen as such position,
however, the hyphen is optional. Therefore the organizers’ solution is more
consistent, though less obvious from the first glance.

https://github.com/dialogue-evaluation/AGRR-2019
https://github.com/dialogue-evaluation/AGRR-2019

Filling the gaps with rules and networks

	 3

3.	� The position of the predicate, corresponding to the gap (gap resolution task).
4.	� [item:core] The core arguments of the elided predicate: вице‑президентом

(vice-president+Ins) and Саддам Хуссейн (Saddam Hussein+Nom).
5.	� [item:core-main] The core arguments of the main predicate, correspond-

ing to the orphaned dependents of the elided one: Президентом Ирака
(president+Ins of Iraq+Gen) and Бакр (Bakr+Nom).

Alltogether these subtasks comprise the full resolution track. The participants
were allowed to solve the entire task or simply detect the presence/absence of the
gap. Note that a sentence may contain several gaps, corresponding to the same main
predicate, such as.

(3)	 У двоих были черные волосы, у одного — светлые, а у четвертого —
каштановые.
Two of them had black hair, one blond and the fourth — brown.

The dataset also contains several examples with only one orphaned dependent,
such as

(4)	 Судья посмотрела на свои часы, затем — на меня.
The judge looked at her watch and then — at me.

The characteristics of the dataset are given in Table 1. Note that the number
of gapped sentences and their relative frequency significantly exceeds the correspond-
ing parameters of existing general-purpose corpora, such as Universal Dependencies
(e. g. [5], Table 1).

Table 1: Statistics of gap sentences in the dataset

Train Development Test

Total 16,407 4,143 2,046
With gaps 5,542 1,382 680
Multiple gaps 369 90 47
Single orphan gaps 174 27 17

3.	 Rule-based approach

As introduced in [12], the gapping relations in UD 2.x treebanks is treated via
promotion (see also [5]). The highest node in “obliqueness hierarchy” 4 is promoted
to be the head of the clause containing the gap, while all other core dependents of the
elided predicate are attached to it via the orphan relation. It results in the dependency
tree below on Figure 1.

4	 nsubj > obj > iobj > obl > advmod > csubj > xcomp > ccomp > advcl

Sorokin A. A.﻿﻿﻿﻿

4�

Figure 1: A dependency tree for a sentence, containing gap

Given the golden dependency tree, the rule-based pipeline may work as following:
1.	� Find the orphan dependency and extract the subtrees attached to its left and

right edges as elided predicate dependents. If required, remove the punctua-
tion and conjuction between two clauses.

2.	 Label the first word of the right subtree as gap position.
3.	� Start from the head of the found orphan relation and follow the dependency

edges upward until a verb node is reached. Label this node as the main verb.
4.	� Find in the subtree of the main verb the two nodes that better match the core

dependents found on the first step using their morphology, syntactic roles
and semantics (e. g. embeddings).

Provided the syntactic tree is correct, the first three stages are performed algo-
rithmically. The last task was studied in [15] for English, where it was solved by finding
the cheapest alignment between the arguments in the full and gapped clause, where
the cost of the alignment was based on similarities between the phrases being aligned
as well as on the monotonicity of the alignment. The cost of individual alignment links
used GloVe similarities between words being aligned and their part-of-speech tags.
This method achieved a relatively high quality of remnant attachment with precision
and recall of 87% (see Table 5 in [15]) on golden parses for English language. How-
ever, in the real world scenario with automatically generated parse trees using state-
of-the-art dependency parsers, the recall falled to 38% and even the precision to 65%.

We met the same problems as in even to a greater extent. For example, in the de-
velopment set of the dataset our parser found only 338 orphan relations which is less
than one quarter of the number of gapped sentences5. Even if the model reconstructs
an approximately correct parse tree in terms of its topology (Unlabeled Attachment
Score), it may fail to label the orphan edge correctly. It is frequently confused with
nsubj, obl or nmod, amod relations, for example, in the sentence on Figure 2 nsubj
was predicted instead of orphan.

Figure 2: Wrong dependency label in automatical
parse tree of gapped sequence

5	 We used the UDPipe [18] dependency parser trained on ru-syntagrus corpus together with
DeepPavlov morphological tagger, based on [10] and [17].

Filling the gaps with rules and networks

	 5

Some of these parsing errors can be overcome using other clues except the or-
phan relation, such as the presence of hyphen or “…, a …” construction together with
the verb-noun conj relation between the main clause and the promoted gap depen-
dent, which is unlikely to occur in other conditions. Therefore we developed a com-
plicated rule-based system, which finds the gap position using the potentially incor-
rect dependency tree. If the tree was correct, a system would find the gap predicates
by picking the shortest edge that covers the gap position detected on the previous
stage. However, parsing errors make the rules even more complicated since the parser
is prone to establish local dependencies. For example, consider the sentence

(5)	 Мне поставили пять, а брату моей подруги детства — четыре (They gave
(the mark) five to me and to the brother of my childhood friend+Fem — four)

and its correct and predicted parses on Figure 3.

Figure 3: Local attachment error in automatically
obtained dependency parse tree (bottom)

Following the obliqueness hierarchy, the gold parse tree the second direct ob-
ject четыре “four” is attached to the head of the main clause and the indirect object
брату brother+Dat — to it via orphan relation. However, the indirect object is much
closer to the main verb, therefore the parser selects it as the head of the second clause.
Moreover, both numeral objects obtain a wrong dependency label nummod:gov; the
structure of the noun phrase моей подруги детства “my+Gen+Fem childhood+Gen
friend+Gen+Fem” is also incorrect. In this case a system finds the pattern “... , a ... ”
and the conj relation between verb and noun, but fails to restore the second predicate
of the gap.

To find the remnants of the gap arguments we utilize the morphological informa-
tion. Namely, we try to find the descendants of the main verb that have the same part-
of-speech and case as the arguments. If only a single word satisfies these constraints,
we return this word as remnant. If there are multiple remnants, we rank them using
their depth in the tree, their location (to the left or to the right of the main verb) and
other features. The hierarchy of features was tuned by hand on the training set.

The final part of the model transforms the constituent heads discovered on the pre-
vious stages to the correspondings constituents, which are returned as spans. We use
a syntactic parser for this purpose simply considering all dependents of a constituent

Sorokin A. A.﻿﻿﻿﻿

6�

head as its subtree. We also write some rules to remove the punctuation and function
words on constituent boundaries and to deal with format mismatch between UD and
the competition (e.g., competition and UD guidelines differently treat numeral con-
structions such as десять лет or fixed prepositional phrases).

4.	 Neural model

Rule-based models usually suffer from data variability and vagueness. Conse-
quently, we decided to design a neural network that can automatically detect gapping
after training on labeled data. We solve the task by stages, using separate networks
for gap location, predicate location and remnant matching, although the architecture
of all the networks is the same. The networks on latter stages of the pipeline use as in-
puts (some of) the outputs produced by the previous stages. We describe in details
the network for gap prediction and only note the differences for models that perform
predicate location and remnant matching.

4.1.	Network for gap location

We solve the following task: given the tokenized sentence w1, …, wm, the verb
position i and word position j, predict whether the verb wi was elided in position j. The
network structure can be described as following:

1.	 Take as input a sequence of pretrained word embeddings e1, …, em.
2.	� Pass this embeddings through two independent bidirectional LSTMs to ob-

tain sequences of context vectors g1, …, gm and h1, …, hm.
3.	� Calculate similarity scores between gi and hj, a natural way to do it is to mea-

sure their dot product sij = ⟨gi, hj⟩.
4.	� Pass the similarities through a sigmoid layer σij = σ(sij).
5.	� Label as gaps for verb wi all the positions j, such that σij > 1

2.

We did not use the softmax activation because there can be several gaps for a sin-
gle verb in a sentence. After preliminary experiments we replaced the attention-like
similarity calculation by an Infersent-like [3] dense layer using the formula:

sij = ⟨w, [gi, hj, gi − hj, gi ⊙ hj]⟩ + b,

where w and b are trainable vectors, ⊙ denotes element-wise product and [ ⋅ ] concat-
enation. The intuition behind is that g-embedding of the main verb gi should match
the h-embedding of the gap position hj.

4.2.	Network modifications

For the task of gap argument location we use as inputs the pair of verb and gap
positions (i and k respectively). When calculating the similarity scores si

a
k
r
j
g for the ar-

gument in position j we simply use a dense layer si
a
k
r
j
g = ⟨warg, [gi, gk, hj]⟩ + barg

Since there can be only one left argument for a given gap, we return the position
of the highest score σikj provided σikj > 1

2. We also select only those k that satisfy the

Filling the gaps with rules and networks

	 7

inequality i <  j < k. For the right argument we train an analogous model, using the
restriction j > k during decoding phase.

For the problem of remnant matching we pass as inputs the verb index i and
corresponding gap predicate index k. Since the predicate of the gapped verb usually
resemble its remnant we use again the Infersent-like formula:

si
r
k
e
j
m = ⟨wrem, [gi, gk, hj, gk − hj, gk ⊙ hj]⟩ + brem

In this case also only the word with the highest score is returned.
Summarizing, given the training instance for a single sentence, which includes

the main verb V, its predicates (remnants) Rl and Rr and the gap triples of the form
⟨Gi, Pi, l, Pi, r⟩, the prediction pipeline is expressed in Table 2.

Table 2: Inputs and outputs for different pipeline phases

Pipeline phase Input Output

Gap location V G1, …, Gk

Gap predicate location v, Gi Pi, 1, Pi, r

Remnant location v, Pi, l Rl

v, Pi, r Rr

When the heads are found, we recover the complete remnant and predicate spans
using the same dependency-based procedure as in the rule-based system.

Theoretically, the information about word morphology and syntax can be use-
ful to detect its gapping status. Our network is enough flexible for this task: one may
concatenate the embeddings of word morphological tag and dependency type to the
pretrained word embedding and train the corresponding embedding matrix together
with the network.

5.	 Model training

5.1.	Loss function

Our loss function consists of two components: Lp, penalizing false positives, and
Lr, preventing from false negatives. Both components use standard cross-entropy loss
and sum over all verbs in all sentences of the training data. Using notation of the pre-
vious section, the loss for a single verb in position i is

where Ig is the set of all answers (gaps) for a given input (verb). Actually,
L = Lp + Lr equals to standard cross-entropy. Since recall is more important than

Sorokin A. A.﻿﻿﻿﻿

8�

precision at the early stages of the pipeline, we penalize false negatives higher than
false positives by weighting Lr with additional multiple α.

When doing argument prediction and remnant matching we output only the po-
sition with the highest matching score sij. Therefore we must ensure during training,
that the score of the correct word in position jg is maximal among all words. In this
case we add auxiliary loss

,

which is zero only when the correct word has the highest score. It is also weighted
by recall weight α, which was selected to be 2 in our experiments.

5.2.	Model parameters

We used ELMo embeddings [13] as input for our model, using the implemen-
tation from DeepPavlov library [1]. We took the first layer of ElMo network, since
it is known to better reflect morphological and syntactic properties that are important
for gapping. The size of these embeddings was 1024. Bidirectional LSTMs for sentence
processing contained 192 units in each direction.

We collected the inputs in mini-batches, a single batch contains all input-output
pairs for 8 sentences (there can be several verbs in a sentence, therefore actual size
of the mini-batch is larger). The input data is partitioned in 3/1 proportion to test and
development sets. The network was trained for 5 epochs, if F1-score did not improve
for 2 epochs, the training was stopped. Training was performed using Adam opti-
mizer with default settings. Our network is implemented using Keras6.

6.	 Model application

6.1.	Input and output format

Training data consists of raw text sentences together with their annotation. The
annotation consists of two parts, the first is the binary label (0/1) indicating whether
a gap occurs in the current sentence. For the sentences containing the gap the sec-
ond part generally contains 6 pairs of numbers, as shown on Figure 4. The first pair
of numbers refers to the main predicate (typically, a single verb), and the second and
the third to its core arguments; the fourth one contains the empty span of the gap,
the two remaining ones label the positions of gap predicates. All offsets are given
in characters.

Figure 4: A typical example of input data sentence

6	 https://github.com/AlexeySorokin/Gapping

https://github.com/AlexeySorokin/Gapping

Filling the gaps with rules and networks

	 9

For some sentences, the number of input spans differ: if the gapped verb has
only one argument remaining, such as поперек the one on Figure 5.1, then there are
only only 4 spans present. On the contrary, if more the sentence contains r > 1 gaps,
as in Figure 5.2, (домишко (казался) дворцом, дома (казались) небоскребами) and
the gapped verb has k arguments, then the total number of input spans is r(k + 1)
(typically k equals 2).

Figure 5: Other examples of input data sentences

To be evaluated, a system should provide the output of the same format as the
input given. If the system does not predict the span, the corresponding column is left
empty.

6.2.	Data pre- and postprocessing

Since both our systems operate on the level of subtree heads, not the character-
based spans, we need to convert the input data to appropriate format before applying
the model and transform it back when submitting the output. Input conversion is re-
quired on two stages: to prepare training data and to evaluate system output on vali-
dation data.

First, character-level spans are converted to word-level spans using the NLTK to-
kenizer (we also tried the UDPipe one but found it to perform worse). Second, for each
span the subtree head is determined using the automatically obtained parse tree. We se-
lect as possible heads all words in the span whose parent lies outside this span. If the parse
tree is correct, there is only one such head. If multiple heads are returned due to parsing
errors, we exclude the instance during training or return None during validation.

During model evaluation we need to convert its predictions back to the competi-
tion format. Subtree heads are transformed to word-level spans using the procedure
described in Section 3 and word-level spans are converted to character-level to pro-
duce the final answer. We note that this procedure is prone to errors due to incorrect
parsing and (potentially) tokenization.

7.	 Results and discussion

We present the evaluation of the entire system using the official evalution script 7
as well as our own metrics. We pay more attention to our own metrics since they allow
to evaluate separate stages of the pipeline.

7	 https://github.com/dialogue-evaluation/AGRR-2019/blob/master/agrr_metrics.py

https://github.com/dialogue-evaluation/AGRR-2019/blob/master/agrr_metrics.py

Sorokin A. A.﻿﻿﻿﻿

10�

7.1.	 Individual models evaluation

Our gapping model essentially consists of model for 3 individual subtasks: gap
location, gapped predicates location and remnants matching. Additionally, to predict
argument spans, the stage of span prediction is required. We present scores for each
of the stages separately, passing the gold input to them (see Table 2 for the list of inputs
and outputs for each phase of the pipeline). Since our models return subtree heads,
their predictions are judged against the subtree heads extracted from correct spans,
when our input preprocessor fails to extract such span, any output is considered as in-
valid. We evaluate the model on the level of individual inputs, not sentences. We col-
lect all input-output tuples and calculate the number of true positives (present both
in gold and predicted answers), false positives and false negatives. For all the tasks ex-
cept gap location we also count the number of partially correct answers, which is the
number of input-output pairs for which more than one half of tuple elements was
predicted correctly. These partial matches are added to the number of true positives
with weight 0.5 when calculating precision, recall and F1-measure. The metrics are
reported using the official test set and the gold answers on it. We compare 3 models:
the rule-based one, the full neural model and the ensemble of 3 neural models.

Table 3: Quality of individual pipeline stages on
test set of AGRR-2019 competition

Stage Model TP FP FN partial Precision Recall F1

Gap location Rule-based 556 219 180 0 71.74 75.54 73.59
Neural (single) 663 50 73 0 92.99 90.08 91.51
Neural (ensemble) 1397 86 103 0 94.20 93.13 93.66

Predicate
location

Rule-based 615 2 54 67 94.81 88.11 91.34
Neural (single) 649 0 13 74 94.88 93.21 94.04
Neural (ensemble) 1378 0 10 112 96.24 95.60 95.92

Remnant
matching

Rule-based 475 0 208 53 94.98 68.14 79.35
Neural (single) 557 3 106 73 93.76 80.64 86.71
Neural (ensemble) 576 4 107 53 95.18 81.86 88.02

Span
prediction

Rule-based 520 0 116 100 91.94 77.45 84.07

Table 3 demonstrates that rule-based model definitely looses to the neural one.
Moreover, the only rule-based component of the neural pipeline, span prediction, oc-
curs to be the weakest part of it. To measure relative impact of different pipeline com-
ponents, we score the output after each stage of the pipeline.

Table 4 supports the conclusion made from individual stages evaluation: neural
model is significantly stronger than the rule-based one. Though their overall perfor-
mance is comparable in terms of precision, the recall of the neural model is definitely
higher. Note that after remnant matching stage the precision of rule-based model goes
up because this phase eliminates some arguments of the gapped verb that were in-
correctly predicted on the previous stages and do not match any arguments of the
main verb in the sentence. It is also the only stage, where individual rule-based model

Filling the gaps with rules and networks

	 11

is comparable with the neural one at least in precision terms, however it is achieved
at the expense of significant decrease of recall.

Table 4: Quality after each stage of the pipeline
on test set of AGRR-2019 competition

Stage Model TP FP FN partial Precision Recall F1

Gap location Rule-based 556 219 180 0 71.74 75.54 73.59
Neural (single) 663 50 73 0 92.99 90.08 91.51
Neural (ensemble) 672 45 64 0 93.72 91.30 92.50

Predicate
location

Rule-based 537 170 131 68 73.68 77.58 75.58
Neural (single) 598 31 69 69 90.62 85.94 88.21
Neural (ensemble) 617 27 62 57 92.08 87.70 89.84

Remnant
matching

Rule-based 398 34 266 72 86.11 58.97 70.00
Neural (single) 527 22 87 122 87.63 79.89 83.58
Neural (ensemble) 561 19 75 100 89.85 83.02 86.30

Span
prediction

Rule-based 322 45 277 137 77.48 53.06 62.98
Neural (single) 403 38 103 230 77.20 70.38 73.63
Neural (ensemble) 436 38 94 206 79.77 74.67 76.13

7.2.	AGRR-2019 evaluation metrics

In Table 5 we score different stages of the pipeline using the official evaluation
metrics of the competition. The organizers evaluated the performance both in term
of binary detection of gapping in a sentence, as well as complete gapping resolution,
which uses character-wise precision and recall. Since full resolution can be performed
only when all the answers are available, intermediate stages are evaluated using only
binary metrics.

Table 5: Official evaluation metrics of AGRR-2019 competition after
each stage of the pipeline on development (left) and test (right) set

Stage Model

Binary
Full

resolutionPrecision Recall F1

Gap location Rule-based 80.6 80.6 82.9 82.5 81.7 81.5 — —
Neural (single) 96.1 96.2 93.7 92.5 94.9 94.3 — —
Neural (ensemble) 97.2 97.0 94.6 92.9 95.9 95.0 — —

Predicate location Rule-based 80.6 80.6 82.9 82.5 81.7 81.5 — —
Neural (single) 96.3 96.3 93.3 91.8 94.7 94.0 — —
Neural (ensemble) 97.2 97.0 94.4 92.2 95.8 94.6 — —

Remnants matching Rule-based 93.1 93.4 63.7 64.6 75.6 76.3 — —
Neural (single) 97.4 97.3 91.2 89.1 94.2 93.0 — —
Neural (ensemble) 98.0 97.9 92.0 90.1 94.9 93.9 — —

Span prediction Rule-based 93.1 93.4 63.7 64.6 75.6 76.3 59.3 60.2
Neural (single) 97.4 97.3 91.2 89.1 94.2 93.0 87.5 85.3
Neural (ensemble) 98.0 97.9 91.4 90.1 94.9 93.9 89.1 87.1

Sorokin A. A.﻿﻿﻿﻿

12�

Almost always scores decrease between subsequent stages of the pipeline. The
only exception is the rule-based model, where gaps and predicates are located us-
ing the same model, therefore there accuracies coincide. On the stage of remnants
matching the precision of rule-based model grows up since most incorrectly predicted
predicates are not matched with any remnant and are therefore rejected. However, for
a significant fraction of correct predicates matches are also not found which deterio-
rates the overall performance.

The first thing to note is solid performance of our model in terms of precision even
without ensembling. Its recall is also rather high: the best scores achieved by AGRR-
2019 participants 8 during evaluation were 95.9% for binary gap detection and 89.2%
for full resolution, so we are about two percents behind9.

Our comparison demonstrates the clear superiority of neural models in all phases
of the pipeline. However, the training set provided by the organizers of AGRR-2019
was rather large and requires huge amount of manual effort in its collection. It is natu-
ral to ask whether neural models can be used in low-resource setting. We selected first
1,600 sentences of the training data for training and 400 sentences of development
data for tuning and trained an ensemble of 3 models on this smaller dataset. The re-
sults in comparison with our large model is given are given in Table 6.

Table 6: Official evaluation metrics of AGRR-2019 for neural model
trained on smaller dataset on development (left) and test (right) set

Stage Model

Binary
Full
resolutionPrecision Recall F1

Gap location Rule-based 80.6 80.6 82.9 82.5 81.7 81.5 — —
Small neural (ensemble) 96.0 98.2 86.2 81.2 90.8 88.9 — —
Neural (ensemble) 97.2 97.0 94.6 92.9 95.9 95.0 — —

Predicate
location

Rule-based 80.6 80.6 82.9 82.5 81.7 81.5 — —
Small neural (ensemble) 96.0 98.2 85.9 81.2 90.7 88.9 — —
Neural (ensemble) 97.2 97.0 94.4 92.2 95.8 94.6 — —

Remnants
matching

Rule-based 93.1 93.4 63.7 64.6 75.6 76.3 — —
Small neural (ensemble) 97.4 98.6 76.7 71.5 85.8 82.9 — —
Neural (ensemble) 98.0 97.9 92.0 90.1 94.9 93.9 — —

Span
prediction

Rule-based 93.1 93.4 63.7 64.6 75.6 76.3 59.3 60.2
Small neural (ensemble) 97.4 98.6 76.7 71.5 85.8 82.9 73.9 69.4
Neural (ensemble) 98.0 97.9 91.4 90.1 94.9 93.9 89.1 87.1

We observe that models trained on smaller sample of data do not loose in preci-
sion, however, recall significantly decreases at all stages of the pipeline. Nevertheless,
they still outperform the rule-based model. We observed severe overfitting on small
datasets, which means that several parameters of the model (e. g., interlayer dropout

8	 https://github.com/dialogue-evaluation/AGRR-2019
9	 We note again that only our rule-based system was submitted during the competition, there-

fore other participants could potentially improve their scores as well.

https://github.com/dialogue-evaluation/AGRR-2019

Filling the gaps with rules and networks

	 13

or number of recurrent units) must be altered. The recall weight should be also ad-
justed even further than it is in the basic model. Nevertheless, even datasets of me-
dium size allow to train neural gap detectors that outperform rule-based recognizers.

8.	 Conclusions

We have designed a high-quality neural model for gap resolution for Russian lan-
guage, whose quality achieves 93% for binary gap detection and 89% for full gap reso-
lution. The model is based on ELMo embeddings and recurrent neural networks. The
are at least three directions for future research: the first is to apply the model to other
languages, such as English, Spanish or Czech. Since model architecture is language
independent, the main obstacle can be relative lack of data. Though our model shows
solid performance for only 2,000 training sentences available, they are much lower
than the scores of the model trained on larger datasets. Probably, curated genera-
tion of training data (especially negative examples) can make the model more robust.
Another problem is the usage of ELMo embeddings which are not available for many
languages and whose learning is time- and resource-consuming. The simplest solu-
tion is to replace ELMo with newer multilingual BERT [4] which demonstrated high
performance in other works of AGRR-2019 competition.

Another problem to investigate is the role of morphological and syntactic infor-
mation. We found that it does not have stable effect on the full dataset, however, with
smaller data its significance can be higher. The main improvement can be achieved
in the weakest part of the model: the detection of constituent bounds using a syn-
tactic parser. The simplest way to enhance performance is to retrain the parser with
more gapped sentences and thus increase its ability to parse such sentences. Alterna-
tively, one may directly solve the task of constituent bound detection without reduc-
ing to syntactic parsing. We leave these questions for future research.

Acknowledgements

The author thanks the organizers of AGRR-2019 competition for giving the op-
portunity to participate and for their helpful cooperation during the Shared Task.
I am also very grateful to the stuff of MIPT Neural Networks laboratory for warm and
inspiring atmosphere during the work on the problem. I deeply thank the anonymous
reviewers whose comments and suggestions helped to improve the paper.

References

1.	 Burtsev M. et al.: DeepPavlov: Open-Source Library for Dialogue Systems (2018),
Proceedings of ACL 2018, System Demonstrations, Melbourne, Australia,
pp. 122–127.

2.	 Carnie A.: Syntax: A generative introduction (2006), Blackwell.

Sorokin A. A.﻿﻿﻿﻿

14�

3.	 Conneau A. et al.: Supervised learning of universal sentence representations
from natural language inference data (2017), arXiv preprint arXiv:1705.02364,
available at https://arxiv.org/pdf/1705.02364.pdf.

4.	 Devlin J. et al.: Bert: Pre-training of deep bidirectional transformers for language
understanding (2018), arXiv preprint arXiv:1810.04805, available at https://
arxiv.org/pdf/1810.04805.pdf.

5.	 Droganova K., Zeman D.: Elliptic Constructions: Spotting Patterns in UD Tree-
banks (2017), Proceedings of the NoDaLiDa 2017 Workshop on Universal De-
pendencies (UDW 2017), Gothenburg, Sweden, pp. 48–57.

6.	 Droganova K. et al.: Parse Me if You Can: Artificial Treebanks for Parsing Ex-
periments on Elliptical Constructions (2018), Proceedings of the Eleventh Inter-
national Conference on Language Resources and Evaluation (LREC-2018), Mi-
yazaki, Japan, pp. 1845–1852.

7.	 Droganova K. et al.: Mind the Gap: Data Enrichment in Dependency Parsing of El-
liptical Constructions (2018), Proceedings of the Second Workshop on Universal
Dependencies (UDW 2018), Brussels, Belgium, pp. 47–54.

8.	 Jackendoff R. S.: Gapping and related rules (1971), Linguistic inquiry, Vol. 2., 1.,
pp. 21–35.

9.	 Johnson K.: Gapping (2014), manuscript, available at http://people.umass.edu/
kbj/homepage/Content/gapping.pdf.

10.	 Heigold G., Neumann G., van Genabith J.: An extensive empirical evaluation
of character-based morphological tagging for 14 languages (2015), Proceedings
of the 15th Conference of the European Chapter of the Association for Computa-
tional Linguistics: Volume 1, Long Papers., Vol. 1., pp. 505–513.

11.	 Lakoff G., Ross J. R.: Gapping and the order of constituents (1970), Progress
in linguistics: A collection of papers., Vol. 43., p. 249.

12.	 Nivre J. et al.: (2016), Universal Dependencies v1: A Multilingual Treebank Col-
lection, Language Resources and Evaluation (LREC), Portoroz, pp. 1659–1666.

13.	 Peters M. E. et al.: Deep contextualized word representations (2018), arXiv pre-
print arXiv:1802.05365.

14.	 Schuster S., Lamm M., Manning C. D.: Gapping Constructions in Universal De-
pendencies v2 (2017), Proceedings of the NoDaLiDa 2017 Workshop on Univer-
sal Dependencies (UDW 2017), Gothenburg, Sweden, pp. 123–132.

15.	 Schuster S., Nivre J., Manning C. D.: Sentences with Gapping: Parsing and Recon-
structing Elided Predicates (2018), arXiv preprint arXiv:1804.06922, available
at https://arxiv.org/pdf/1804.06922.pdf.

16.	 Smurov I. et al.: AGRR 2019: Automatic Gapping Resolution for Russian (2019),
International conference on computational linguistics “Dialogue”, to appear.

17.	 Sorokin A.: Improving neural morphological Tagging using Language Mod-
els (2018), International conference on computational linguistics “Dialogue”.,
Vol 1., pp. 707–720.

18.	 Straka M.: UDPipe 2.0 Prototype at CoNLL 2018 UD Shared Task (2018), Pro-
ceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies., Brussels, Belgium, pp. 197–207.

https://arxiv.org/pdf/1705.02364.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1810.04805.pdf
http://people.umass.edu/kbj/homepage/Content/gapping.pdf
http://people.umass.edu/kbj/homepage/Content/gapping.pdf
#fig:contexts:disambiguate

	Sorokin A. A.: Filling the gaps with rules and networks
	Introduction
	Task description
	Rule-based approach
	Neural model
	Network for gap location
	Network modifications

	Model training
	Loss function
	Model parameters

	Model application
	Input and output format
	Data pre- and postprocessing

	Results and discussion
	Individual models evaluation
	AGRR-2019 evaluation metrics

	Conclusions
	Acknowledgements
	References

