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Данная работа посвящена морфологическому анализу и лемматиза-
ции для эвенкийского и селькупского языка на материале соревно-
вания LowResourceEval-2019 для малоресурсных языков. Мы сравни-
ваем базовую нейронную модель с её расширениями, использующими 
лингвистическую информацию (морфологический словарь, извлечён-
ный из корпуса), и показываем, что они не ведут к улучшению каче-
ства. Наша гипотеза состоит в том, что дополнительная информация 
должна извлекаться не из обучающего корпуса, а из внешних источни-
ков, в противном случае ту же самую информацию более эффективно 
извлекает сама нейронная сеть.

Keywords: морфологический анализ, малоресурсные языки, лемма-
тизация, морфологические словари

1.	 Introduction

In recent years neural networks have dramatically improved the quality of nat-
ural language processing, especially in semantically-oriented tasks. One of the key 
advantages of neural models is their ability to extract knowledge from large amounts 
of unlabeled data, for example in the form of word embeddings or language models, 
or efficiently utilize patterns in raw data that are too complex or vague to be captured 
with handcrafted features. However, the applicability of neural approaches in low-
resource setting is not that obvious. The main obstacle is the inclination of neural 
networks to overfit, especially on small datasets.

In the field of morphological tagging neural network models clearly outperform ear-
lier approaches based on conditional random fields or local classifiers [2]. As discussed 
in [9], the key reason is the importance of word-level information which is readily captured 
by character-level embeddings, in contrast to tag-level interactions which were in the fo-
cus of hidden Markov models or conditional random fields. Several editions of CONLL 
shared tasks [13], [12] have demonstrated that neural networks are equally more efficient 
in high-resource or low-resource setting. Therefore we consider neural networks as a de-
fault choice for morphological analyzer without any need for further discussion.

What have to be discussed is the choice of information passed to the network. 
Usually neural models are trained on raw tokenized texts. On the contrary, earlier ap-
proaches to morphological tagging heavily relied on external morphological diction-
aries and other resources. For example, the whole task of morphological tagging was 
treated as disambiguation, which is, the selection of the correct label from the ones 
presented in the dictionary. This approach is rarely applied in neural paradigm since 
it contradicts the main idea of neural NLP: make the model to learn arbitrarily com-
plex patterns from data and do not impose restrictions on their form by external con-
straints. However, the studies for Russian language [1], [9] demonstrated, that pass-
ing the output of external morphological analyzer as additional input of the network 
improves tagging accuracy even in high-resource setting. Therefore we expected the 
benefits to be even higher in case when little data is given.
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We tested our hypothesis on two datasets of LowResourceEval-2019 competition2 
[5] for Evenk and Selkup languages, solving the tasks of morphological tagging and 
lemmatization. Since the datasets were equipped with gold morpheme segmentation 
and most of the morphemes were found to correspond with morphological features, 
our strategy was restrict the set of potential tags given possible segmentations and 
pass these tags as additional inputs to the model (the approach successfully applied 
in the studies mentioned above). However, our hypothesis failed, since none of the 
complex models was able to outperform the basic ones3.

The structure of our paper is the following: in Section 2 we present the architec-
ture of our basic model, Section 3 describes the feature extraction process, Section 4 
is devoted to data and experiments description, in Section 5 we present the results 
and discuss them. We conclude in Section 6 with the directions for future work.

2.	 Model architecture

2.1.	Morphological tagging

Our basic model is the implementation of Heigold’s character-based network [2]. 
For the sake of completeness we briefly describe the architecture below. Note that sim-
ilar approach was also pursued in the work [4] on neural language modelling. The 
model consists of two subnetworks: the first transforms the words to their vector repre-
sentations, the second uses the obtained embeddings to predict morphological labels.

1.	� Each character is encoded as a 1-hot row vector with nc dimensions, nc be-
ing the number of characters. Thus the word is represented by a sequence 
of L such vectors xi1, …, xiL, which is a matrix X with L rows and nc columns 
with exactly one unit in each row.

2.	� This matrix is multiplied by a matrix U of size nc × ne, producing a sequence 
X′ = XU of L embeddings x′i1, …, x′iL. Xij is the ij-th column of the embedding 
matrix U, which is a dense representation of ij-th character in the alphabet.

3.	 �X′ is passed through parallel convolutional layers with different window 
size w1, …, wK and filters number f1, ..., fK. After this step K vectors of dimen-
sions f1, …, fK are accociated with each position of the word. Roughly speak-
ing, k-th of these vectors contains information of useful ngrams of length 
wk around current position.

4.	� All the vectors from the previous step are concatenated, producing a vector 
of length F = ∑ j fj for each symbol of the word. A word is now a matrix with 
L rows and F columns.

5.	� A maximum over each row is taken via max-pooling layer, finally encoding 
a word as a vector h′ of fixed dimension F.

2	 https://lowresource-lang-eval.github.io

3	 Nonetheless, our models took the first place on all tasks where we participated

https://lowresource-lang-eval.github.io
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6.	� Several highway layers [10] are applied to this vector. Highway layer per-
forms the transformation h = s ⊙ g(Vh′) + (1 − s) ⊙ h′, where V is a square 
matrix with V rows, g a non-linear function and ⊙ denotes coordinate-wise 
product. The idea is both to produce useful combinations of features using 
one-layer perceprtron output g(Vh′) and keep relevant dimensions of h′ 
at the same time. The contributions of both components are balanced using 
s vector, which is obtained by another one-layer perceptron with sigmoid 
activation: s = 𝜎(Sh′).

The second component of the network transforms the obtained sequence of word 
vectors h1, …, hn into n propability distributions π1, …, πn, πj being probabilities 
of tags for j-th word in the sentence. First, two LSTMs are applied4, the first process-
ing the sentence from left to right and the second from right to left. The first produces 
vectors y⃗1, …, y⃗n and the second produces y⃖n, …, y⃖1, thus each word is encoded by two 
vectors y⃗i, y⃖i ∈ ℝny. These vectors are multiplied by a projection matrix W with nt rows 
and ny columns, nt being the number of tags. Applying softmax layer produces the 
required probability distribution:

 (concatenation),

In [2] this architecture is proved to be successful for languages of different mor-
phological structure even with only several thousands of tagged sentences available 
for training. It is also flexible enough to encode additional linguistic information i. e. 
from a morphological dictionary. This information is encoded in a vector form, for 
example, using a 0/1 vector of size nt where nonzero elements correspond to the posi-
tions of possible dictionary tags. Such a vector zi

feat is concatenated to the output zi 
of bidirectional LSTM5.

2.2.	Lemmatization

In general, the task of lemmatization (the recovery of word normal form given 
the inflected one) is a string-to-string transduction problem. As demonstrated in sev-
eral works [7] on string inflection, such a problem should be solved by sequence-to-se-
quence (seq2seq) neural networks. However, in most cases the transduction changes 
the material only on word edges (certainly, it is wrong for Semitic languages or for 
stem vowel alternations in German or Spanish), therefore it can be described using 
finite amount of information. This reduces the transduction problem “reconstruct the 
basic form letter by letter” to a classification problem “guess the transformation pat-
tern” which can be solved even without neural networks. Such an approach is used, for 
example, in [11]. However, in the languages of the current study the problem becomes 

4	 We omit the equations, interested reader may consult [4].

5	 we tested other ways to append this information, but this showed the higher performance.
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even simpler: in Evenk the inflected form is always formed by attaching several (pos-
sibly zero) letters to the end of the word. Consequently, the lemma is always an initial 
segment of the word under consideration. Therefore to perform lemmatization one 
suffices to predict the end position of the stem. We model it by predicting a prob-
ability distribution pw = [p1, …, p|w|] over word positions where pi is the probability 
that word stem ends after its i-th letter. Then the end of the initial word form is the 
maximum of this distribution.

For Selkup the pattern is slightly more complex: inflection also includes infix-
ation, which is the insertion of morphemes inside the stem, though the percentage 
of such cases is rather low. For example, the inflected form of amrsat “bowl” is amĩrsat’. 
Hence, the stem is no longer a prefix of the word, but its (possibly discontinuous) sub-
sequence. We model this by predicting two vectors pw and qw: the first has the same 
meaning as for Evenk, while qi ∈  [0; 1] is the probability of i-th letter to be the result 
of epenthese, which implies that it is not present in the initial form.

Summarizing, the network architecture is the following:

1.	� Each symbol is encoded as a 0/1-vector of size nt, which is transformed 
to a dense vector by multiplying an embedding matrix.

2.	� As in the tagging model, we pass the embeddings throw several convolu-
tional layers. Each layer contains filters of different width, whose outputs 
are collected together in a single vector. To facilitate learning we insert batch 
normalization [3] between consecutive layers6.

3.	� Each positional output hi of the convolutional layer is multiplied by a train-
able vector w to obtain a number si = ⟨w, hi⟩.

4.	� The vector s of obtained scores is passed through a softmax layer to get the 
final probability distribution p = softmax(s):

When we additionally predict the vector q of deletion probabilities, then the prob-
ability that i-th symbol is omitted is qi = 𝜎(⟨wdel, hi⟩), where 𝜎 is the sigmoid activation 
function. To predict the lemma we find the maximum value of pi: I = argmaxi pi and 
return w[:I] as lemma. When modelling the infixation, we additionally delete all sym-
bols in positions j such that qj ≥ 12.

3.	 Additional features

Theoretically, context-dependent morphological taggers should benefit from in-
formation, available from morphological dictionaries, lexicons and/or context-free 
analyzers. When a dictionary is not available, the most common tool to apply is a suf-
fix guesser, which determines possible morphological features using word suffixes. 

6	 This solution is crucial for deep convolutional network, without batch normalization the net-
work often fails to learn at all due to gradient decay.
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However, this method is not easily adapted to agglutinative languages since to extract 
a particular morpheme one may need to observe up to 8 final symbols. We selected 
another strategy: in addition to the morphological tags, the training data contained 
the morpheme segmentation of the form:

			   ne:jamtli		 ne:   ja_DIM	 m_ACC 	 tłi_3SG

Some of the morphemes can be converted to morphological features, for ex-
ample, 3SG is Number=Sing|Person=3. This mapping can be reconstructed auto-
matically, by calculating probabilities of morphological features which cooccur with 
a given morph in a training corpus. This leads to the following method of feature 
extraction: given a word, we extract all possible morpheme combination on its right 
edge, checking not only the correctness of morph segmentation, but also the validity 
of corresponding sequence of morpheme types. Then for each morpheme type we ex-
tract the corresponding values of morphological features. We select as possible all 
morphological tags whose feature values do not contradict the selected features and 
cooccur with them in at least 3 training examples. To prevent overfitting we randomly 
replace this vector by all zeros with a fixed probability to allow the model to general-
ize to out-of-vocabulary inputs.

In the case of lemmatization we also experimented with either adding the part 
of speech label as additional input during lemmatization or multitask learning ap-
proach: we trained the network to predict word part-of-speech and detect stem bound-
ary simultaneously, sharing all the embedding and convolutional layers between them.

4.	 Data and experiments

In case of neural tagging we run two models: the basic one and the one aug-
mented with possible tag information. We also test three models for lemmatization: 
the basic one, the one augmented with morphological tags as input and the one with 
guessed possible morpheme boundaries.

4.1.	Model parameters

Following [2] and [9], we choose the following parameters of morphological tag-
ger: character embeddings are of size 32, convolutional window size changes from 1 
to 7, the number of filters for width w is min (200, 50w). The number of convolutional 
layers is 2 with 0.2 dropout between layers and highway layer following the final con-
volution. This yields word embeddings of final size 1100, which are passed through 
a bidirectional LSTM with 128 units in each direction. We also tested several other 
parameter combinations but found these to give higher accuracy.

The lemmatizer had two convolutional layers of with 5 and 192 filters with 
no dropout (we found it useless in contrast to several previous studies). Other param-
eters are completely determined by the algorithm.

In preliminary studies we divided the dataset to train and development subsets 
and found 20 epochs of training to be optimal for lemmatization and 25 epochs for mor-
phological tagging. Therefore our final models were trained for this number of epochs 
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without early stopping. We used Adam optimizer and batches of size 16. All networks 
are implemented using Keras framework, our implementation is open-source7.

When we used the guesser, we additionally memorized all the word-lemma pairs 
that appear 5 or more times in the training data. Since the precision of the guesser 
is much lower than its recall (see Section 5 below), we restricted its output to 5 most 
frequent tags.

4.2.	Data

We test our models on Evenk and Selkup dataset of LowResourceLangEval con-
test8. The parameters of the dataset are given in Table 1. All the datasets were con-
verted to CONLL-U format 9 by the Shared Task organizers, they provided the tokeni-
zation as well. We consider as tags the concatenation of part-of-speech label and mor-
phological features, for example, adp and noun, are both examples of possible tags. 
We also tried to predict the value of each feature, e. g. case and gender, separately, but 
this significantly deteriorated performance.

Table 1: Dataset parameters

Language Dataset words sentences
unique 
tags

OOV 
words hapaxes

2*Evenk train == xbby xtby 25,869 5,527 873 0 8,063
test == xbby xtby 2,697 548 319 814 272

2*Selkup train == xbby xtby 13,436 2,394 316 0 5,088
test == xbby xtby 2,426 425 151 912 246

Lemmatization algorithm is trained and tested on the same datasets. To reduce 
overfitting we downsample frequent words: if a word occurs n > 5 times in the data-
set we include it to the training sample only 5 + ⌈log2(n − 5)⌉ times.

We would like to note that in comparison to low-resource languages in CONLL 
2018 Shared Task [12] Evenk and Selkup corpora are substantially larger, since most 
of low-resource corpora there do not exceed 1000 words. That implies that several 
questions relevant for actual low-resource parsing do not arise in our current study.

5.	 Results and discussion

In case of morphological tagging we compare two approaches, the basic one (ba-
sic) and the one using dictionary (dictionary) information. Since we have no sepa-
rate morphological dictionaries, all the word-tag pairs are extracted from the train-
ing data. We report accuracy both for morphological tags (which is, the percentage 

7	 https://github.com/AlexeySorokin/NeuralMorphoTagger1/tree/low-resource

8	 https://lowresource-lang-eval.github.io

9	 https://universaldependencies.org/format.html

https://github.com/AlexeySorokin/NeuralMorphoTagger1/tree/low-resource
https://lowresource-lang-eval.github.io
https://universaldependencies.org/format.html
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of words whose full morphological descriptions are predicted correctly) and sen-
tences (the fraction of sentences where all words obtain correct morphological tags). 
For each metric we report two numbers: the average across 3 randomly initialized 
models (left) and the ensemble of these models (right).

Table 2: Results of morphological tagging

Model

Evenk Selkup

Tag acc. Sent acc. Tag acc. Sent acc.

basic 81.30 83.98 45.25 50.18 80.75 82.81 40.32 43.06
dictionary 81.48 83.13 45.80 48.54 80.65 82.32 39.14 42.12

For lemmatization we compare 3 models: the basic one (basic), the tag-aug-
mented one (tags) which takes gold morphological labels as additional inputs and the 
joint one (multitask) which tries to predict these tags as an auxiliary task. As in case 
of tagging, we show the average accuracy across 3 runs and the accuracy of ensemble 
of 3 models.

Table 3: Results of lemmatization

Model

Evenk Selkup

Single Ensemble Single Ensemble

basic 91.32 93.33 88.35 89.94
tags 91.73 92.66 87.68 89.40
multitask 90.88 91.88 86.26 87.79

5.1.	Discussion

As shown in Table 2 and Table 3, the baseline network method either is on the 
par with linguistically informed extensions or even outperforms them. As demon-
strated earlier [1], [9], in case of several other languages morphological dictionaries 
and guessers do improve performance (the boost is especially valuable for Russian 
and Pymorphy [6] analyzer). Actually, our results do not show that external morpho-
logical knowledge is useless, it only shows that dictionary cannot be extracted from 
the same training corpus. It can be viewed as the kind of overfitting: the dictionary 
information is available in training time, but the model may lack it in test phase due 
to OOV words. Usually dropping a fraction of dictionary inputs in training time fixes 
this issue at least partially, but the present study it was not the case.

To understand the phenomenon better we tested the guesser itself. As mentioned 
above, we restricted the output of the guesser to 5 most probable tags. This yields 
to the coverage of 72% for Selkup and 66% for Evenk even on the training set itself, 
since other hypotheses are too rare to occur between top 5 that do not contradict with 
morpheme segmentation. However, the coverage on the development is not much 
lower: 70% and 60%, which means that our morpheme guesser is able to generalize 
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to unseen words. Hence, it is not poor coverage that causes decrease in performance. 
Further, omitting the top 5 variants restriction produces 20 − 30 variants for a word 
in average, which makes the guesser helpless (the choice between 30 tags is not easier 
than between the original 200). And the learning curve shows that dictionary-aug-
mented model trains significantly faster on the first few iterations (which confirms 
that dictionary information is used), however, achieves lower performance in the end.

Probably, the problem lies in the datasets themselves. We compare the charac-
teristics of the datasets with other language presented in UD 2.3 corpora [8]. Evenk 
belongs to Tungus family, which has no other UD corpora available, while Selkup 
is Uralic, though it belongs to Samoyed outgroup. Table 4 contains the characteristics 
of Selkup in comparison with hu_szeged corpora of Hungarian, which also belongs 
to Uralic family of languages, and SST corpus of Slovenian, which is Indo-European 
(Slavic), but whose corpora is of the same order of size10.

Table 4: Dataset comparison

Language Dataset words sentences
unique 
tags

OOV 
words hapaxes

2*Evenk train == xbby xtby 25,869 5,527 873 0 8,063
test == xbby xtby 2,697 548 319 814 272

2*Selkup train == xbby xtby 13,436 2,394 316 0 5,088
test == xbby xtby 2,426 425 151 912 246

2*Hungarian train == xbby xtby 20,166 910 581 0 5,883
test == xbby xtby 10,448 449 446 3233 513

2*Slovenian train == xbby xtby 19,473 2,078 645 0 3,021
test == xbby xtby 10,015 1,110 506 1,631 316

We observe that the main feature of Selkup corpus is smaller length of sentences. 
The ratio of unique tags and corpus length is almost the same as for Hungarian and 
lower than for Slovenian, but larger than for typical corpora of Universal Dependen-
cies. The percentage of out-of-vocabulary words and hapax legomena is also much 
larger than in Hungarian which obviously makes tagging harder and makes it more 
useless to memorize training set in form of dictionaries. The quantitative properties 
of Evenk corpora are even more extreme than of Selkup. Last, but not the least is the 
origin of texts appearing in corpus, while most UD corpora are collected from media 
and fiction, Evenk and Selkup corpora are more informal by nature and mostly consist 
of native speakers oral speech records, which also makes the corpus less standartized. 
Summarizing, our hypothesis is that the informal nature of the corpora and dialectal 
variation increase the proportion of out-of-vocabulary and rare words, thus making 
it harder to memorize corpus via dictionaries.

All these concerns apply to lemmatization as well. The only thing we would like 
to mention is that multitask learning both on lemmatization and part-of-speech tag-
ging task had failed, showing inferior performance. Probably this is due to low capac-
ity of networks we used, however, our experiments show that even gold morphological 

10	 The corpora for comparison are chosen randomly just to show the general pattern
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tags does not improve lemmatization accuracy which implies that part-of-speech in-
formation is practically useless for this task. That contradicts our intuition and re-
quires further study.

6.	 Conclusions and further work

We compared different methods of augmenting neural models with additional in-
formation for lemmatization and part-of-speech tagging of Selkup and Evenk languages. 
Our results show that basic neural models outperforms its extensions. We expect this 
to be not a general phenomena, but the feature of particular datasets. However, a wider 
cross-lingual study is required to reveal the factors that affect the applicability of mor-
phological dictionaries in tasks of computational morphology. The first experiment 
to perform is to use not the dictionary, extracted from the training set, but independently 
constructed one. However, the author does not know such dictionaries for Evenk and 
Selkup. Another direction of study is the usage of unlabeled corpora. Such corpora were 
available in the shared task, but their orthography was different from the morphology 
corpus. Given recent success of minimally supervised neural language models, probably 
we can extract more from unlabeled data than from dictionaries and grammars.

However, the main problem is to find the cheapest and quickest way for field 
linguists to create resources which will allow high-quality morphological analysis. 
For example, it is questionable whether it is easier to collect an unlabeled corpus of re-
quired size or an example grammar. The author is not a practical linguist to resolve 
this question, however the adoption of neural networks from industrial NLP for main 
world languages to the low-resource studies still has to be done.
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