Computational Linguistics and Intellectual Technologies:
Proceedings of the International Conference “Dialogue 2019”

Moscow, May 29—June 1, 2019

Stepanov M. A. (projectttower@gmail.com)
MIPT, Dolgoprudny, Russia

Headline generation is a task that has a good solution based on seq2seq
models with an attention mechanism. However, it is still quite challenging
to deal with morphologically rich languages, such as Russian, which have
many word forms and therefore larger vocabularies. To deal with complex
dependencies arising in such languages we propose several approaches
based on using stems and grammemes. We applied these approaches
to the pointer-generator network and took second place in the competition
on headline generation held by the conference Dialogue-2019.

Key words: headline generation, Russian language, pointer-generator,
stem, flexion, lemma, grammeme

CrtenaHoB M. A. (projectttower@gmail.com)
M®TU, JonronpyaHsi, Poccua

3ajaya reHepaumm 3arofIoBKOB MMEET XOPOLLIEE PELLEHNE, KOTopoe Ba3unpy-
€TCS Ha MCNOJIb30BaHNN Seq2seq MoAeNen C MEXaHM3MOM BHMMaHUSA. OgHako
B cnydae Mopdonornyeckn 6oratbix 3bIKOB TakUM MOLENSM MPUXOOUTCS
CTankmeaTtbCsi C 6051ee CNOXHbLIMU 3aBUCUMOCTSIMU, KOTOPbIE MOTYT MPOSiB-
NATbCS B BUAE 60NbLLIOr0 KONMYECTBa COBOMOPM U X COYETaHUIA APYT C APY-
romM. Mbl npeanaraem HECKOMbKO MNOAX0A0B, KOTOPbIE MOMYT MOMOYb aBTOMa-
TUYECKMM Seq2Seq reHepaTopam 3arofIoBKOB Y4YUTbIBATb 3aBUCUMOCTU TaKMX
A3bIKOB, Kak PyCcCKUin. Mbl Tak)Xe MPUMEHUNV AaHHble MOAX0Ab! K apXUTEKTYpe
reHeparopa-ykasaTesisi 1 3aHs/IM BTOPOE MECTO Ha COPEBHOBAHUN MO reHepa-
LLMM 3arofIoBKOB, NPOBEAEHHOM B pamkax KoHdepeHuun Ouanor-2019.

KnioueBble cnoBa: reHepauys 3arojoBkOB, reHepaTop-ykasaTesib, CTeM-
MUHT, Giekcus, neMmma, rpammema

Stepanov M. A.

1. Introduction

There are two main groups of text summarization approaches: abstractive and
extractive. While extractive aproaches try to find the most informative subset of the
text and copy it, abstraction-based systems generate words and phrases not from the
source, but from the vocabulary, using learned natural language dependencies.

Automatic headline generation is a type of the summarization task. The aim
of summarization is to create a shorter version of the text (in our case, the title), which
contains the main idea of the given article. Working on task of generating headings
has an advantage over the traditional summarization: it is much easier to find articles
with titles than with annotations, which is very convenient for systems based on ma-
chine learning methods. There is almost an infinite supply of news articles in all major
languages and almost all of them have a headline.

But, despite the existence of a huge amount of data, headline generation system
still should be able to deal with dependencies of natural language, and the creation
of this system is a challenging task. Due to this difficulty the vast majority of past
decisions use extractive methods (see [1] or [2]), but the relatively recent success
of sequence-to-sequence models [3] has made the abstractive approach viable (see [4]
or [5]). Now it is possible to automatically read and generate text that has the struc-
ture similar to the headings written by human.

However, the benefits that seq2seq brought were not enough to create desirable
headlines: these systems have problems such as the words repeating and the inability
to use out-of-vocabulary (OOV) words of a source article. To enable OOV extraction,
a pointer-generator model has been developed and introduced by See et al. [6]. This
model is both extractive and abstractive: it is based on seq2seq, but can copy words
from text too. Additionally, the coverage mechanism and the usage of a coverage loss
(penalty for repeating words) during the training phase makes this model less prone
to repetition. Due to these advantages, we chose the pointer-generator network with
coverage mechanism as the baseline.

Though pointer-generator network can create human-like headlines of English
news, it is quite difficult for the model to achieve the same success with, for exam-
ple, Russian articles. Even simple vocabulary of morphologically rich language can
contain several million forms and variations. For a model it is harder to find suitable
words in the space of possible variants expanded by word forms. With a larger vocabu-
lary it takes much more memory, computing power and time to teach the network
to generate desirable headings.

In this paper we propose several approaches to deal with problems of morpholog-
ically rich languages: stem+flexion encoding and grammeme embeddings. We also
present results of experiments that were made with RIA corpus! (presented by [7])
and Lenta corpus? during the competition track on the headlines generation held
by the conference Dialogue-2019.

News headline generation using stems, lemmas and grammemes

2. System description

2.1. Baseline model

Final Distribution

"Argentina”
X(l — [Jgen) h ngen
Context Vector I I I }

States Distribution
v
8
v
uonnguisiq Alejngedop

c
o
€ Pgen
9 o
Z g
<
5 o)
S35 T
8 % - —_— s g
c T Q.
o T]
@
Germany emerge victorious in 20 win against Argentina on Saturday ... <START> Germany beat %
»
N J \ J)
Y
Source Text Partial Summary

Figure 1: Pointer-generator model scheme from [6]

The pointer-generator network is based on a sequence-to-sequence model with
an attention mechanism (Figure 1). It uses the encoder to make encoder hidden states
h;, which store the extracted information from the article. Article tokens w; are fed one-
by-one to the encoder’s embedding layer and the single-layer bidirectional LSTM. After
that the model generates words of abstract step by step, applying the decoder (unidirec-
tional one-layer LSTM) to produce a decoder state s; from an embedding of previously
generated word y,—; and so-called context vector (created by the attention mechanism)
h;. Then the network gets the output vocabulary distribution (that show which word
is most probable as next token of the headline) from the decoder state.

The attention mechanism is a modification of the seq2seq model which helps the
decoder to produce the next word indicating which words of the source article are the
most important at the step t. This information is contained in the attention distribu-
tion a‘ calculated by this mechanism. Next, using the attention distribution as weights
in the sum of encoder states h;, model creates context vector h;—the “second ingredi-
ent” of the output vocabulary distribution.

In addition to the generation of words from the fixed vocabulary this model
is able to copy tokens from the source article. It is realized by calculating the genera-
tion probability p,., at each step t. Then the network use pg., as a soft switch to choose
between generating a word using the vocabulary distribution, or copying a word from
the text using at, which shows the most suitable tokens for extraction. This modifica-
tion makes model both extractive and abstractive and therefore more flexible for dif-
ferent kinds of situations.

Stepanov M. A.

To cope with the output repetition problem, coverage mechanism is also involved
in the title generation process. This modification retains all attention distributions
produced by the model at each step t, and gives an additional loss if the model use
similar a’. If pointer-generator is trained with coverage mechanism, it is more liable
to extract different words from the source and use different context vectors, which
makes the model less repetitive3.

2.2. Stem+flexion encoding

In order to help model to work with larger vocabulary of morphologically rich
languages, we experimented with two approaches. Both of them change the structure
of input and output words to make the vocabulary sufficiently smaller with no drops
in performance.

2afeiMneHwe NpoWzowno e CyﬁﬁOTy E BaroHe sneKTponoe=ga MOCKEa

2aaeMneH +ue npousown +o B CyﬁﬁOT +y B BaroH +e 3nNekKTponoeza +a MOCKE +a

Figure 2: Example of stem+flexion encoding

The first approach is based on encoding each word as a pair of its stem and flex-
ion (or only stem if there is no flexion). To encode n words with m forms of each word
model can work with a list of n stems and a fixed number of flexions instead of a vocab-
ulary with n * m words, which makes it easier for a network to find natural language
dependencies in articles. The output of model consists of stems and flexions too and
it can be easily decoded into words sequence.

In our experiments we use a Porter stemmer? [8] for automatic encoding and
avocabulary of stems and flexions with 450 flexions®. Each flexion has a ‘+” as a prefix
to distinguish them from stems (Figure 2) and to restore headline from the output
sequence of stems and flexions.

It is important to mention that we don’t make any changes in the model archi-
tecture in this part of experiments, only changes in input and output processing. But
we also make attempts to use 3-layer encoder and decoder instead of single-layer
to help the model to learn more sophisticated dependencies®.

3 read [6] to get more information about baseline model

News headline generation using stems, lemmas and grammemes

2.3. Grammeme embeddings

Final Distribution

—

a
X (1= pgen) jﬂ—-—l-‘
Context Vector I I I } :

uonnqusiq
Kiejnqedop
UWIWST

Dgen

Attention
swawwels

States Distribution

Encoder
Hidden

) (NOUN (NOUN
<START> g nomn) plur gent)

\j_ JE—
’ Parti ‘\ Summaty Grammemes

Kubepataka Ha Kownahua Sony pictures chABU dunbi HTEpBLIO - <START> Araka

N
Sourde Grampmemep

Source Lemmas Partial Lemmed Summary

Figure 3: Pointer-generator model using grammemes

Another approach is based on the usage of lemmas and grammemes instead
of words. We use a morphoparser (we choose pymorphy27) to divide each word into
its lemma and a string consisting of a part of speech and all values of changeable
grammatical values (Figure 3): For example, a noun ‘xakepos’ is encoded to lemma
‘xakep’ and string ‘(NOUN plur gent)’. If a part of speech is not changeable (prepo-
sitions, conjunctions), then word gets string ‘(_)’. With this method, we created the
vocabulary of lemmas and the vocabulary of strings with grammemes, which in our
experiments has a size of 300.

We have changed the model architecture for these experiments: instead of the
embedding layer for tokens of encoder’s and decoder’s input sequences we have made
two independent layers for lemmas and grammeme strings. Network transforms article
words to two sets of lemmas and grammemes and each of them passes through its own
embedding layer. Then model concatenates two embeddings and gives the result to en-
coder and decoder. In addition to the vocabulary distribution (of lemmas) decoder gen-
erates distribution over the vocabulary of strings with grammemes mentioned above.

Next, in the training phase model calculates the loss. We have included addi-
tional cross entropy loss for the grammeme output sequence in order to help the net-
work to learn how to create right word forms. If the title generator works in the test
phase, it tries to create headline with morphoparser by applying grammeme strings
to lemmas (if it is impossible, the model gives lemma to output)®.

Stepanov M. A.

3. Data and training

We consider two corpora: RIA and Lenta datasets. RIA dataset was provided
by Russian news agency “Rossiya Segodnya” and used in the competition track of the
conference Dialogue-2019°. It contains 1,003,869 news articles of the time period
from January 2010 to December 2014. We use this corpus as a training dataset which
has an additional preprocessing such as cleaning from html-tags, lower-casing and
tokenization. To speed up the learning of models, articles are also processed by the
stem+flexion encoder and divided into lemmas and grammemes sequences by the
morphoparser.

Lenta corpus has 739 new articles from 1999-08-30 to 2018-12-15. We chose
10,000 random articles to form the test dataset. These texts were preprocessed in the
same way as the train dataset.

4. Experiments

4.1. Models

In this work there were 4 different models which trained on Ria Corpus and were
tested on Lenta Corpus. Here they are: baseline pointer-generator, pointer-gener-
ator using stems, pointer-generator using stems and 3-layer LSTM and pointer-
generator using grammeme embeddings.

4.2. Training

The models trained with the Adam optimizer using a scaled learning rate. All
of them worked with vocabularies with 100,000 tokens and used token embeddings
with the size of 128. Grammeme embeddings had the size of 32. Embedding layers
were shared between encoder and decoder for all models. The size of the hidden vec-
tors of LSTM layers was equal to 256. In addition, the length of the input sequences
was limited with 600 tokens for the model with stems and 400 for other models. Ref-
erence headlines were also truncated to 20 (for the model with stems) and 12 tokens
(for other models). For headline generation, beam-search size was made equal to 4.

All models trained with batches of articles with the size of 32. Baseline pointer-
generator trained for 400,000 epochs, as models working with stems. Model with
grammemes embeddings passed through 285,000 training epochs.

5. Results

We present our results on Lenta dataset in the Table 1. As it can be seen, all mod-
elswith modifications surpassed vanilla pointer-generator on ROUGE-1, ROUGE-2 and
ROUGE-L F1 scores. Model with 3-layer LSTM shows better results than the same

9 https://vk.com/@headline_gen-announcement

News headline generation using stems, lemmas and grammemes

model but with single-layer encoder and decoder. Both of them had the same number
of training epochs, so it seems, that more complex architecture helps title generator
to understand natural language dependencies arising in this dataset better.

Network using grammeme embeddings has better R-1 and R-L scores than mod-
els with stems, but it loses in R-2 scores. But this model has single-layer LSTM, and
if encoder and decoder would be multi-layer, the network with grammeme embed-
dings could outperform models with stems in all scores and with a large margin, what
makes usage of grammemes more preferable than applying stem+flexion encoding.

Table 1: ROUGE-1,2,L F1 and recall scores, on Lenta corpus

Pointer-generator (baseline) 21.36 | 22.27 | 8.69 | 8.70 | 19.25 | 20.79

Pointer-generator with stems 23.47 | 23.81 | 10.24 | 10.39 | 21.24 | 22.27
Pointer-generator with stems and 25.16 | 25.82 | 11.32 | 11.63 | 22.78 | 24.13
3-Layer LSTM
Pointer-generator with grammeme | 25.23 | 25.79 | 10.33 | 10.60 | 22.82 | 24.08
embeddings

Using the model with stems, we took second place in headline generation contest
held by Dialogue-2019. This model was evaluated on the private part of the RIA data-
set and had a score of 20.29 (mean of R-1-f, R-2-f, R-3-f). Unfortunately, 3-layer stem
model and the model with grammeme embedding didn’t participate in competition
because of lack of training time at the end of this event.

Additionally, we present headlines generated by all four models with two ran-
dom texts from the dataset (Table 2).

Table 2: Samples of headlines generated by models

Original text, truncated: famack , 11 Mas . - pria HOBOCTH . IPE3UZEHT POCCUU
AMUTPUH MeJIBEZIEB CUNTAET OMACHBIM JATbHEHNIINN POCT HANIPSXKEHHOCTH Ha OJTHIK-
HeM BOCTOKE . “ JaJTbHEHIINI Pa30TrPeB CUTYaLU Ha OJIVDKHEM BOCTOKE YpeBar
B3PBIBOM U KaTtacTpodoii 7, - cKkazas MeJBe/ieB Ha IIpecc-KOHGEPEHIIMH [0 UTOTaM
[IePErOBOPOB C NMPE3UJEHTOM CUPUU HAlIapoM acazioM . “ ¢ MOeH CTOPOHBI OBUIO
CIeLMaIbHO [IOAYEPKHYTO , YTO POCCHA OyZieT U Jasblile IpeJIPUHUMATE BCe OT Hac
3aBUCsAllee I TOTO , YTOOBI TIOMOraTh BOCCTAHOBJIEHHIO apabo-U3pauIbcKOro MUp-
HOTO TIpoliecca Ha OCHOBE MeXXIyHapOAHO-TIPAaBOBOM 6a3bl , KOTOpas UMeeTcH ...
Original headline: mezBezieB : “ pa3orpes ” cuTyaluu Ha GJIMDKHEM BOCTOKE YpeBaT
KaTacTpodoi

Headline by baseline pointer-generator: MeiBe/ieB CYMTAET OMACHBIM JaJbHEMN-
LW POCT HANIPSDKEHHOCTH Ha GJIM)KHEM BOCTOKE

Headline by pointer-generator using stems: Me/ZIBeZIeB : pOCT HAIIPS’)KEHHOCTH

Ha O/IKHEeM BOCTOKe YpeBaT B3PEIBOM

Headline by pointer-generator using stems and 3-layer LSTM: Hanps:KeHHOCTb
Ha OJIKHEM BOCTOKe OIIacHA , 3asBIUI Me/IBE/IEB

Stepanov M. A.

Headline by pointer-generator using grammeme embeddings: meaBezieB cunTaer
OIIaCHBIM POCT HATIPSKEHHOCTH Ha OIMKHEM BOCTOKE

Original text, truncated: MmockBa , 5 Mas - pra HOBOCTH . 33JbIMJIEHHE TIPOU3OIILIO

B cy660Ty B BaroHe aI€KTPOIIOe3/ia MOCKBA - GPA3HUHO SPOCTABCKOTO HAIIPaBIeHUA
MOCKOBCKO¥ JKeJIE3HOH JOPOT'H , M3-3a Yero MacCcaKMpOoB IIPUIIIOCH IepecaZiuTh B Apy-
T'yIO 3JIEKTPUYKY , celidac BMKeHHe IT0e3/[0B BOCCTaHOBJIEHO , COOOIIMII pra HOBOCTH
PYKOBOZAUTENb CIIY>KObI KOPITOPATUBHBIX KOMMYHUKALIUH MK BIaJUMUP MSATKOB .
CeroziHA B palioHe I1aT$OpMbI YKaIIOBCKasA B AJIEKTpoIioe3zie HoMmep 6707 B IIATOM Ba-
T'OHe IPOM30IIIe] HEIITATHBIN pa3orpeB GYKChI KOJIECHOH Iaphl , 4TO a0 HebosIblIoe
3aJbIMJIEHHE . B CBA3U C 3THM 3JIEKTPOIIOe3/] 6bUI OCTAHOBJIEH ” , - CKa3aJl MATKOB ...
Original headline: B asiekTprYKe B MOZIMOCKOBbE IIPOU3OIILIO 3aZbIMJIEHHE BaTOHA
Headline by baseline pointer-generator: 3aibIMJIEHVE TIPOU3OIILIO B SIEKTPUUIKE
Ha IIOAMOCKOBHOM KeJIe3HOH ZJopore

Headline by pointer-generator using stems: 3aZibIMJIeHle IIPOU30ILIO B BaroHe
1oe37ia MOCKBa - GPA3NHO APOCIABCKOTO HANlPaBIEeHUA

Headline by pointer-generator using stems and 3-layer LSTM: 3azpIMIeH1E TIPO-
M30IIUTO B BaroHe 3JIeKTPOIIOe3/ia MOCKOBCKOH »KeJIe3HOH ZJ0POTU

Headline by pointer-generator using grammeme embeddings: 3azpiMIeHIe TPO-
M30IILTO B BaTrOHE JIEKTPUYKU MK/, - QPA3UHO

6. Conclusion

In this paper, we explore the application of two approaches to the pointer-gen-
erator network processing, such as usage of stems and grammemes, and with these
described modifications model outperforms its own results on Russian news articles.
The future work will focus on testing models on other datasets and experimenting
with settings and subsystems of the model.

Acknowledgements

Author is thankful to Ivan Smurov for useful discussions and proofreading, or-
ganizers of competition track of Dialogue-2019 on headline generation for providing
test dataset and interesting task.

References

1. Julian Kupiec, Jan Pedersen, and Francine Chen (1995). A trainable document
summarizer. In International ACM SIGIR conference on Research and develop-
ment in information retrieval

2. Horacio Saggion and Thierry Poibeau (2013). Automatic text summarization:
Past, present and future. In Multi-source, Multilingual Information Extraction
and Summarization, Springer, pages 3-21.

News headline generation using stems, lemmas and grammemes

Ilya Sutskever, Oriol Vinyals, and Quoc V Le (2014). Sequence to sequence learn-
ing with neural networks. In Neural Information Processing Systems.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Caglar Gulcehre, and Bing
Xiang (2016). Abstractive text summarization using sequence-to-sequence RNNs
and beyond. In Computational Natural Language Learning.

Alexander M Rush, Sumit Chopra, and Jason Weston (2015). A neural attention
model for abstractive sentence summarization. In Empirical Methods in Natural
Language Processing.

Abigail See, Peter J. Liu, Christopher D. Manning (2017). “Get To The Point: Sum-
marization with Pointer-Generator Networks” arXiv:1704.04368.

Daniil Gavrilov, Pavel Kalaidin, Valentin Malykh (2019). “Self-Attentive Model
for Headline Generation” arXiv:1901.07786.

Martin F. Porter (1980). An algorithm for suffix stripping.

	Stepanov M. A.: News headline generation using stems, lemmas and grammemes
	Introduction
	System description
	Baseline model
	Stem+flexion encoding
	Grammeme embeddings

	Data and training
	Experiments
	Models
	Training

	Results
	Conclusion
	Acknowledgements
	References

