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We describe a model for a robot that learns about the world and her com-
panions through natural language communication. The model supports
open-domain learning, where the robot has a drive to learn about new con-
cepts, new friends, and new properties of friends and concept instances.
The robot tries to fill gaps, resolve uncertainties and resolve conflicts. The
absorbed knowledge consists of everything people tell her, the situations
and objects she perceives and whatever she finds on the web. The results
of her interactions and perceptions are kept in an RDF triple store to enable
reasoning over her knowledge and experiences. The robot uses a theory
of mind to keep track of who said what, when and where. Accumulating
knowledge results in complex states to which the robot needs to respond.
In this paper, we look into two specific aspects of such complex knowl-
edge states: 1) reflecting on the status of the knowledge acquired through
a new notion of thoughts and 2) defining the context during which knowl-
edge is acquired. Thoughts form the basis for drives on which the robot
communicates. We capture episodic contexts to keep instances of objects
apart across different locations, which results in differentiating the acquired
knowledge over specific encounters. Both aspects make the communica-
tion more dynamic and result in more initiatives by the robot.

Keywords: multimodal communication, social robots, knowledge acquisi-
tion and modeling
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1. Introduction

Human-robot communication is necessary for collaboration in future societies.
It is vital to build social relationships between humans and robots, to create a com-
mon ground from shared experiences and knowledge, and to build up trust. Natural
language communication in multimodal environments plays a crucial role for estab-
lishing such a relationship.

Both machines and humans make errors in dealing with real-life situations.
We have therefore designed a robot model that assumes that information can
be wrong, has gaps and even conflicts. To deal with this, the robot needs to learn
about us and the world: fill gaps and get feedback on errors and confirmation in case
of uncertainty. In previous work, [17], we described a female robot model, named
Leolani, that supports open-domain learning through communication, having a drive
to learn new concepts and make new friends. The absorbed knowledge consists of ev-
erything people tell her, the situations and objects she perceives, and what she finds
on the web. The results of her interactions and perceptions are kept in a triple store,
enabling her to reason over her knowledge and experiences. The robot uses a theory
of mind [7] to record the learning provenance (who said what, when and where).

Learning through communication results in complex knowledge states that may
contain errors, false statements, conflicts or interpretations that differ across different
people and situations. The functioning of the robot is at risk if the acquired informa-
tion is taken as it is. It is therefore necessary that the robot knows how to reflect on the
state of her brain and takes initiatives to improve this state. Furthermore, situations
need to be interpreted within the unique context of an interaction. Knowledge that
is accumulated within such a situation needs to be related to this context as well, e.g.
my laptop is likely to be found in my office but not in other places. By differentiating
these contexts, possible conflicts can be prevented and communication will be easier
as there is less ambiguity and fewer conflicts.

In this position paper, we therefore describe an extension to Leolani that reflects
on the acquired knowledge by producing so-called thoughts. These thoughts result
in drives to improve the state of brain through communication. The robot takes initia-
tives to involve her human sources for that purpose. The robot model also includes
a notion of context that allows us to identify different situations and the objects
within it. This results in fewer conflicts and less confusion (uncertainty) and there-
fore more healthy states of the brain, better definitions of relevance and less need
to communicate.

This paper is structured as follows: In Section 2, we summarize related work
on social robot communication. Our data model and the way in which the robot learns
through communication are described in Section 3. In Section 4, we describe the
thoughts and the corresponding drives that lead to initiatives to communicate. For
dealing with the world and humans, the robot needs to represent and memorize the
contexts in which she encounters people. In Section 5), we explain how instances
of contexts are created and how these result in more fine-grained and differentiated
representations of situations. We conclude and discuss future work in Section 6.
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2. Related work

Mavridis [11] gives an overview of natural language processing technologies
in human-robot interaction and challenges to be tackled, including 'theory of mind’,
open-domain communication, varied speech acts, symbol grounding and multiple-
turn dialogues. Most human-robot communication models still only handle basic
communication using one or two speech acts, limited symbol grounding and single
turns.

Recently, there has been an increase in chat systems that can be used for human-
robot communication. Many of these models are either scripted ([14],[1]) or based
on neural networks (often sequence-to-sequence (seq2seq) models), see for example:
the dialogue systems built from the Ubuntu dialogue corpus [9], CoQA corpus [12],
Twitter [8], the Persona-Chat dataset [ 18] and movie dialogues ([13] and [16]). Both
types can be seen as extremes on the scales of control and fluency. Scripted conver-
sations allow developers to control interaction, but knowledge needs to be defined
manually and the conversation is limited, not robust and rarely fluent. Seq2seq mod-
els, on the other hand, are robust, fluent and respond to any input, but cannot be con-
trolled or explained. More importantly, no explicit knowledge is derived from these
conversations.

Our model is designed for open communication with the explicit result of acquir-
ing knowledge and building a social relationship. It is designed for generic purposes
defined at a low level that can support any high-level goal. This architecture provides
our model with more flexibility and fluency than strictly scripted models, while the
communication is more purposeful than in seq2seq models.

Another important aspect of human-robot communication is mixed-initiative
interaction. Many systems leave the initiative to the human and only respond when
prompted. They do not have an intrinsic drive to communicate unless they are scripted
for some task, e.g. to take your order. Little work has been done on the implementa-
tion of basic drives to communicate in the systems. Our model implements low-level
drives, such as the need to fill knowledge gaps and resolve conflicts and uncertainty.
These drives make the communication active, lively and purposeful. We do not intend
the model to fully capture human dialogue. Rather, dialogues serve to satisfy the ro-
bot’s drives.

In our previous paper [17], we focused on a robot with a theory of mind [7]
that acquires knowledge from people but stores the knowledge as claims from these
people. In this paper we add the notions of thought and context. A thought represents
a brain state that triggers drives. A context is an episodic element that explicitly gath-
ers everything Leolani learns in connection with specific situations. Thoughts and con-
text pave the way for new cognitive functionalities like relevance and permanence,
as well as new intentions that exploit contextual information to drive the conversa-
tion. They also equipt the robot with new initiatives for communication and at the
same time reduce conflicts, ambiguities and define relevance.
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3. Data Model

3.1. Model description

Our robot model architecture is shown in Figure 1. We defined four layers:

1) a sensor processing layer,

2) a communication layer that responds to sensor input or inner drives,

3) alanguage processing layer to deal with questions and statements, and

4) a knowledge layer that queries or stores the result of communication or ac-
cesses the Web.

We utilize several ready-made modules in the sensor processing layer: WebRTC
[3] for speech detection, the Inception neural network [15] for object recognition,
OpenFace [2] for face recognition, and Google Cloud Speech-to-Text API [5] for
speech recognition. We use the outputs of these processing modules as inputs to the
other layers. Therefore, we do not address potential conflicts and ambiguities in the
signal layer itself, but try to resolve them in the higher-level layers.

Microphone

-
|
Text to Speech

Figure 1: Global architecture of the robot model

In this paper, we focus on modeling the result of communication in an RDF triple
store (called ’the brain’), which stores all interpretations of experiences. The brain
forms the basis for the drives of the robot to communicate. We use the Grounded Rep-
resentation and Source Perspective (GRaSP) model [4] as a basis for representing con-
tent, communication and sources. We have adapted GRaSP to deal with perception
and communication by robots. Statements communicated to the robot are mapped
to RDF representations, which are stored together with the source of each statement.



A communicative robot to learn about us and the world

The model also stores the perspective of the source on a property expressed in the
statement. The possible perspective values are denial/confirmation, sentiment/emo-
tion, and certainty. Besides processing statements, the robot handles questions
as SPARQL queries against the knowledge in the brain.
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Figure 2: Natural Language Processing Pipeline

As shown in Figure 2, the NLP Pipeline consists of several external components,
while some are manually implemented specifically for this task. For the sake of trans-
parency, we resorted to rule-based parsing instead of a neural-net approach. This re-
fers specifically to the syntactic and constituency parsing. Syntactic parsing is done
with a Context-Free Grammar which captures the most typical sentence constructions
in English. Since English has quite a strict word order, making such a grammar was
manageable. After the CFG grammar creates a tree from the sentence, the tree is passed
on to the Constituency parser, which assigns roles to the tree nodes. This is done by rely-
ing on word order, but also the POS tags and, if necessary, semantic types. The constitu-
ency parser outputs a triple, consisting of a subject, a predicate and an object, which can
be stored in the brain as a claim or used to query it. Furthermore, to extract perspective
information we rrsort to a simple lexicon of typical sentiment and certainty predicates,
such as like and think. These lexical verbs, along with modal verbs and polarity markers,
e.g. never, are suited for a rough estimate of the perspective expressed by the speaker.!

In Table 1, we show a simplified RDF representation in the brain which is the
result of processing an utterance in a chat for which Tom is the speaker, within a spe-
cific context in Armando’s office on the 24th of January 2019 during which she also
perceived a chair and a person. Tom claimed that Karla lived in Paris and expressed

1 Asanextstep, the model will include temporality within the perspective, using a lexicon of tem-

poral expressions and a more advanced morphological analysis of predicate tense. Temporality
indicates whether the statement is about the here and now, the past or the future (irrealis)
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a perspective: he confirms the claim and he is certain and surprised. In the meantime,
while Leolani was listening to Tom, she also saw a chair and recognized a person,
Gabriela in the room where the chat took place, Armando’s office. The event and the
perceptions are all part of the same context that is anchored in time and place. The
RDF representation gives further details on the source and the perspective and the
entities and relations expressed in the claim.

Table 1: RDF representation representing a context taking place in
a specific time and place, an utterance in a chat, the speaker, the
claim made and the perspective of the speaker on the claim

Named graph: 1ITalk:Interactions

IContext:contextl a eps:Context;
sem:hasBeginTimeStamp | 1Context:2019-01-24;
sem:hasPlace 1Context:armandosOffice;
sem:hasEvent 1Talk:chat4;
eps:hasDetection IWorld:gabriela;
eps:hasDetection I1World:chairl.

ITalk:chat4 a grasp:Chat;
sem:hasSubevent 1Talk:chat4_utterancel.

ITalk:chat4_utterancel a grasp:Utterance;
sem:hasActor IFriends:tom.

IContext:armandosOffice a sem:Place.

IFriends:tom a sem:Actor, grasp:Source.

5 &5

Named graph: ITalk:Perspectives

ITalk:chat4_utterancel a gaf:Mention;

char0-25 grasp:denotes IWorld:karla_livedIn_paris ;
prov:wasDerivedFrom 1Talk:chat4_utterancel ;
prov:wasAttributedTo |Friends:tom .

ITalk:chat4_utterancel ATTRI1a grasp:Attribution;

char0-25 rdf:value grasp:CONFIRM, grasp:CERTAIN,

grasp:SURPRISE;
1Talk:chat4_utterancel_char0-25.

grasp:isAttributionFor

Named graph: 1World:Instan

IWorld:karla
IWorld:paris
IWorld:gabriela
IWorld:chairl

Named graph: IWorld:Claims

n2mu:Person, gaf:Instance .
n2mu:Location, gaf:Instance .
n2mu:Person, gaf:Instance .
n2mu:object, gaf:Instance .

oo o |

| World:karla_livedIn_paris |a | grasp:Statement, sem:Event .
Named graph: IWorld:karla_livedIn_paris
IWorld:karla I1World:livedIn IWorld:paris.

3.2. Model implementation

Following the model in Figure 1, the robot world is implemented both as a Python
application, shown in Figure 3, and as an RDF representation, shown in Figure 4.

Communication modeling starts with representing the Context, which pro-
vides information about the situation within which conversations take place. Within
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a Context, there are Chats, which model human-robot one-to-one conversation.
Within a Chat, Utterances are spoken, both by the human and the robot. These
Utterances are parsed, as mentioned in Section 3.1, to obtain a subject-predi-
cate-object RDF Triple. The parsed Utterance is sent to the brain (represented
as in Table 1), which, in response, produces Thoughts. These Thoughts are the
result of the inclusion of the new RDF triple and its reasoning in relation to all stored

knowledge.
CardinalityConflict Thoughts StatementNovelty
+author +cardinality_conflicts +author
+date +negation_conflict +date
+object | +statement_novelties | @
+entity_novelty
+object_gaps
NegationConflict +subject_gaps EntityNovelt
9 r 4 +overlaps - Y y
+author +trust +object
+date +subject
+predicate
Gap Gaps Overlaps Overlap
+predicate ~ +object +object ~ +author
+entity +subject +subject +date
+entity
Brain
Entity
+id
Context Chat Utterance @ ttype
+label
+datetime +context +chat +offset
+people +id +triple Triol +confidence
+chats +speaker +type riple
+objects +utterances +transcript +subject
+location ~| tme o +predicate
+intention +turn +object
+datetime
+language Predicate
+certainty
+sentiment +cardinality
+emotion +label
— +offset
+confidence

Figure 3: Data model class diagram
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Figure 4: RDF representation

Figure 3 shows the different types of thoughts that we defined so far: gaps, con-
flicts, overlap and novelty. Gaps are defined by the ontologies included, and as such re-
late to the structure of the modelled world. Conflicts, Overlaps and Novelty are
defined by the stored triples and relate to the content of the modelled world. A detailed
description of what these thoughts represent is presented in Table 2. Each of these
thoughts represents a state of the brain that requires a communicative action from the
robot which is implemented as a drive, for example to improve this state or to inform
friends. The way these Thoughts generate drives is explained in the next section.
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Table 2: Types of thoughts

Cardinality statements that cannot coexist because only one object

Conflict is allowed

Negation Conflict | a previous statement is directly negated by a person

Statement awareness that knowledge was acquired before, along with

Novelty the provenance, or if it represents genuinely new information

Entity Novelty awareness that a new entity is mentioned

Subject Gap potential knowledge about a subject is absent and provides
an opportunity to learn something new

Object Gap potential knowledge about an object is absent and provides
an opportunity to learn something new

Overlap awareness that new statements contain shared, but not equal,
information already present in the brain

Trust a score based on how much people talked, how much the robot
learned from them, and how many conflicts they generate

4. Drives

In passive robot models, people ask questions or make statements to which a ro-
bot responds. However, it may prove useful to equip a robot with drives to optimize its
relation with humans and to learn from interactions. In a high-level task, e.g. finding
and moving objects or showing the way, the robot can take initiative to achieve the
goal. In our current model, we focus on lower-level drives that can play a role within
any high-level task. Here, we specifically focus on two tasks to explain the notion
of drives: 1) open-ended learning and 2) creating a personal relationship involving
shared knowledge, experiences and trust. Next, we discuss some drives and thoughts
related to these tasks and the corresponding communication in more detail.

4.1. Getting to know people

Knowing people is one of the robot’s primary drives, as they are important
sources of knowledge. The robot keeps track of her human sources through face rec-
ognition. When she meets a new person, she is triggered to learn about this person.
This trigger is the result of a SubjectGap. The properties asked are predefined by the
Nice2-MeetYou (n2mu) ontology, which captures social properties to start the com-
munication, e.g. where are you from, what you like and who you know. For example,
after meeting Karla, the triples in Table 3 inform Leolani that she does not know
where Karla lives or what her favorite interest is.

Table 3: Sample supporting triples to infer a SubjectGap

IWorld:Karla a n2mu:Person .
n2mu:Person livedIn | n2mu:City .
n2mu:Person favorite | n2mu:Interest .
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After learning about a new person, the robot queries the brain to check if other
people have a similar property. An Overlap thought is generated if the new state-
ment contains some shared, but not equal, information already present in the brain.
For example, the triples in Table 4 show that “Karla lives in Paris” would generate
an overlap with “Tom lives in Paris”. The resulting Overlap prompts her to respond
Do you know my friend Tom who also lives in Paris?.

Table 4: Sample supporting triples to infer an Overlap

IWorld:Karla livedIn IWorld:Paris .
IWorld:Tom livedIn IWorld:Paris .

4.2. Open-ended learning from conversation

In the above example, learning is driven by the predefined ontology. The ontol-
ogy defines the properties as in a closed world, e.g. like, know, origin, own. However,
we do not predefine the objects of these properties. Statements such as I like Scrappy._
Doo or Tom likes Felix are taken seriously and the object is always stored as in instance
labeled by the text coming from the speech recognition without further interpretation.

If an object is not defined in the brain by at least the type of thing it is, an Ob-
jectGap thought it derived which triggers the robot to learn about it. She either
asks people or consults the web. Asking people What is Scrappy_Doo?, she may learn
it is a dog. Consulting the web what a dog is, she may learn that a dog is a mammal
according to DBpedia. Asking people what a dog is, she may learn it is a pet. Learning
about objects, can result in further thoughts such as Overlap, which may yield again
other triggers. For example, Table 5 reflects that Leolani can infer that Karla likes dogs
because she learned that Scrappy_Doo is a dog and Karla likes Scrappy_Doo. Learning
that dogs are mammals may make her think that Karla like mammals. Knowing that
cats are also mammals she can hypothesize that Karla likes cats and even that Karla
may like Felix. This may make her ask Karla Do you like Felix too?.

Table 5: Sample supporting triples to infer a ObjectGap

IWorld:Karla n2mu:like IWorld:Scrappy_Doo .
dbr:Scrappy-Doo dbo:species dbr:Dog .

dbr:Dog a dbo:Mammal .
IWorld:Tom n2mu:like IWorld:Felix_the_cat .
IWorld:Felix_the_cat a n2mu:cat, dbo:Mammal .

4.3. Relevance and novelty

StatementNovelty determines if Leolani has acquired this knowledge before,
along with the provenance information, e.g. when Karla states “I lived in Paris”, Leolani
can identify that she has heard this before from Tom. This may trigger informing Karla
about this. EntityNovelty also signals if the statement involves a new entity, either

10
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as the triple’s subject or object. For example, “Karla visited Morocco” could lead to Leolani
realizing she never heard about Morocco before. In general, Leolani comments on novelty
to her friends, telling them what she learned: these are StatementNovelty thoughts.

Table 6: Sample supporting triples to infer a StatementNovelty

ITalk:chat4_utterancel_ a gaf:Mention;

char0-25 grasp:denotes IWorld:karla_livedIn_paris ;
prov:wasDerivedFrom | ITalk:chat4_utterancel ;
prov:wasAttributedTo | IFriends:tom .
ITalk:chat5_utterancel_ a gaf:Mention;

char0-16 grasp:denotes IWorld:karla_livedIn_paris ;
prov:wasDerivedFrom | ITalk:chat5_utterancel ;
prov:wasAttributedTo | IFriends:karla .

Novelty and Gap thoughts also yield a risk: the robot may continue talking and
asking questions forever to learn more. She lacks Gricean maxims of relevance and
quantity [6]. We currently limit such drives by randomly selecting responses if there
are too many and mimicking relevance through recency and relatedness to the
speaker. New information about the currently addressed person is considered highly
relevant. Similarly, new information connecting to knowledge previously discussed
with the addressee is relevant. In any case, recent information is more urgent and
relevant than old information.

4.4. Uncertainties, conflicts and ambiguities

Open-ended learning also entails a risk with respect to information quality.
We currently address this by capturing uncertainty scores for knowledge and percep-
tions, by detecting conflicts and by resolving ambiguities. Table 7 shows some of the
uncertainties Leolani encounters.

Table 7: Types of uncertainty. * represents future work

The identity of the human | confidence scores of face detection
participant confidence scores of name detection
Ambiguity in language guessing based on immediate context
Object detection confidence of the type

mismatch with previous encounters*
Speech detection confidence scores from the speech

level of noise in the environment*
Uncertainty expressed classifiers that detect modal expressions
by the human participant | classifiers that detect uncertainty from the speech

itself: corrections, hesitations, volume*

number of corrections, negative feedback*

11
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The types of conflicts currently modeled are CardinalityConflicts and Ne-
gationConflicts. Leolani immediately addresses the source when a conflict arises
and confronts other sources that provided the primary information.

A CardinalityConflict is produced whenever an author claims a statement
that can not coexist with another statement as it involves a strictly one-to-one predi-
cate. For instance, “Karla was born in France” cannot coexist with “Karla was born
in Japan”. A NegationConflict is returned when an author claims a direct nega-
tion of an already learned statement. For instance, “Karla lives in Paris” cannot coex-
ist with “Karla does not live in Paris”. These kinds of conflicts trigger Leolani to ask
people for further clarification.

Table 8: Sample supporting triples to infer a CardinalityConflict

IWorld:Karla n2mu:bornln | IWorld:france .
IWorld:Karla n2mu:bornin | IWorld:japan .

Table 9: Sample supporting triples to infer a NegationConflict

ITalk:chat4_utterancel_char0-25_ATTR1 a | grasp:Attribution;

rdf:value grasp:CONFIRM, grasp:CERTAIN,
grasp:SURPRISE;

grasp:isAttributionFor chat4_utterancel_char0-25.

ITalk:chat5_utterancel_char0-16_ATTR2 a | grasp:Attribution;

rdf:value grasp:DENY, grasp:CERTAIN;

grasp:isAttributionFor ITalk:chat5_utterancel_char0-16.

In our current implementation, Leolani only reports uncertainties and conflicts.
Having a theory of mind means that conflicting information does not pose an issue.
It is important that conflicting information can be stored and talked about, as this
helps Leolani function in our conflicting and ambiguous world. In a future version,
we implement more specific strategies to resolve them, e.g. consulting other (trust-
worthy) sources to get confirmation (e.g. DBpedia). Eventually, she could distill her
own judgment based on gathered evidence.

Resolving ambiguity that is inherent to natural language is done by keeping
track of the linguistic context. For instance, third person pronouns are disambigu-
ated using the information on the last mentioned person and the information on gen-
der. The system is equipped with a lexicon of pronouns, which contains information
on the type of entity the pronoun can stand for. Cross-referencing this information
with the knowledge of semantic types of previously mentioned entities allows Leolani
to quickly guess what the pronoun might refer to. Guessing is only done when there
is a high certainty level, otherwise Leolani will declare her confusion and ask “Which
he/she do you mean?”. Future plans include expanding the questions to refer to the
potential guesses, like this “When you say ’she’, do you mean your sister?”. By relying
on linguistic context and salience, we create a proactive approach to disambiguation
and entity coreference, well-suited for a mixed-initiative dialogue system.

12
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4.5. Building trust

The GRaSP model results in the accumulation of claims and the sources of those
claims. Over time, the brain provides information about: 1) who shares claims with
whom, 2) how many people believe or deny a claim, 3) how certain people are, both
generally and individually, 4) how much emotion is expressed by whom, 5) who
changes their opinion when and how often, 6) who tells things about others that are
denied by the primary source, 7) who has provided most knowledge and how trust-
worthy that knowledge is, 8) the number of conflicts raised by a source. All this infor-
mation can be used to build up trust with companions.

At the moment, Trust involves a score for people she speaks to, based on how
much they have talked, how much she has learned from them, and how many conflicts
they generate. Furthermore, trust can generate thoughts that may trigger new actions
or it can be used to respond differently in case of conflicts or uncertainties in a future
extension of the model. Information learned from trustworthy speakers is regarded
as more likely to be correct.

5. Context awareness

One of the major problems for our robot is distinguishing between separate in-
stances of objects of the same type. Whereas people are identified individually through
face recognition, object recognition only yields types. In the first version of our model,
only a single instance of each object type is represented in the brain and all knowledge
is linked to this instance, i.e. all perceived chairs result in the same object instance
of the type chair: all-perceptions-one-instance. The alternative is to treat each per-
ception of an object type as a new instance of said object, but that over-generates
instances, i.e. one-perception-one-instance. Failing to distinguish objects (and also
people) results in unwanted errors and conflicts, as all claims made about any chair
are stored as claims for the same chair. Failing to identify objects results in dispersed
information over false identities and more ambiguity, making it impossible to decide
which chair is being referenced. How then to define the permanence of objects and
their identity, so that we achieve a natural balance for representing objects per situa-
tion and not too many?

Our current solution exploits the knowledge about locations and contexts to rea-
son over object instances. As explained in Section 3, situations encountered by Leo-
lani are represented as instances of a context. A context is anchored in time and con-
nected to a location. All objects and people that she meets during a context are linked
to this context instance together with the identified location. Identifying the location
and identifying the objects mutually depend on each other and this forms the basis for
making reference to situations in a context.

This is how it works. When switched on, the robot becomes aware of a new
context and creates a new instance in her brain. This is shown in Figure 5, for con-
textl, context2 and context3 which are created on different days during which she
is switched on. Next, she scans the objects and people in her environment and relates
them to this new context. People are identified through face recognition and objects

13
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are represented as potential new object instances of a certain type based on image
recognition. After this first scan, the robot tries to identify her location for which she
gathers some initial information (IP, geolocation). She matches all the information
of the current context with all previously modeled contexts.

context1 context2 context3
+ beginTimeStamp: 2019-01-23 + beginTimeStamp: 2019-01-24 + beginTimeStamp: 2019-05-18
+ip: 192.168.1.219 +ip: 192.168.1.320 +ip: 85.113.48.148
+ geolocation: 52.334242, 4866578 + geolocation: 52.334242, 4866578 + geolocation: 55.753937, 37.620490
+ place: armandosOffice + place: armandosOffice + place: 7
+ events: chat4 + events: - + events: -
+ detections(people): tom, gabriela + detections(people): tom, karla + detections(people): tom
+ detections(objects): chair1, chair2, + detections(objects): chair1, chair2, + detections(objects): chairt,
laptop1, laptop2 laptop1, laptop2 potted_plant1

Figure 5: Example for context construction, and location and object identity

In Figure 5, the information collected for context2 is compared to contextl,
whereas context3 will be compared to context2 and contextl. Note that only prop-
erties with so-called endurants as objects make sense to compare. As defined in the
DOLCE ontology [10], endurants, such as objects and physical places, persist through
time and place, whereas perdurants, such as events, conversations, time and situa-
tions only exist within a time and place boundary and therefore only exist at most for
the duration of each instance of a context. Given the basic information on the location
derived from the system, the robot thus only uses physical objects and dimensions
to compare contexts for determining the potential location. If there is sufficient over-
lap with a previous context, Leolani hypothesizes that she is now in the same loca-
tion. In case of uncertainty, she can ask for confirmation. If she is certain that there
is no match, she assumes she is in a new location and will ask for its name. If a new
location is detected and confirmed, the robot assumes all objects in this location are
new instances. If a known location is recognized, she will map the physical objects
of the new context to the objects of the matched location of the most recent context.
If there are less objects in the new context, these objects are assumed to be absent but
still exist in the brain. If there are more objects in the new context, new instances are
created to match the cardinality. Object identity is thus determined in relation to loca-
tion identity, where the robot tries to maximize the permanence of objects for each
location across different contexts.

In Figure 5 for example, context2 matches contextl for Tom and two chairs and
two laptops. On the basis of the match, Leolani concludes she is now in amandosOf-
fice and the chairs and laptops are assumed to be the same, as there is no cardinality
mismatch. What is different is the presence of Gabriela in contextl and the presence
of Karla in context2.? In contrast in the case of context3, only Tom and one chair are

2 In the future, we plan to use properties of objects (both perceived and communicated)
to help to further separate different instances, e.g. green chair or my chair is close by me.
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matched while the potted_plant is new. Therefore, the place value remains unresolved
which will trigger her to ask for the location. If that is different from previous loca-
tions, both the chair and the potted_plant will be added as new instances to the brain.
In communication, the robot treats objects in new locations as new instances un-
less told otherwise. For example, if somebody claims ownership of n chair within a con-
text and location, e.g. this is my chair, the property ownis assigned to that instance.
In another location, a similar object can be perceived but it is considered to be a differ-
ent instance. However, if the same person again claims ownership of this similar ob-
ject, the robot realizes that multiple similar objects related to different locations are
owned by the same person. As a weak conflict, this may trigger questions about identity:
is this the same chair?. On the other hand, if the chair in this new location is claimed
to be owned by another person, it does not result in a conflict as it was already repre-
sented as a different chair in the brain and both chairs can have different owners.

6. Conclusion

In this position paper, we described our models and implementation for a ro-
bot that can learn through communication for the purpose of building a social rela-
tionship. Our model stores knowledge as triples with the source and its perspective.
It represents communication as chats and turns in which claims are made. The model
allows the robot to deal with knowledge coming from different sources, handle uncer-
tainties and conflicts, and derive trust in sources. The robot uses thoughts represent-
ing states of the brain, which trigger actions and communication as low-level drives.
Finally, we have shown how the robot creates an episodic representation of a context
linked to time and location, with awareness of the presence of people and objects.
Awareness of contexts and locations can be used to identify object instances and
model the permanence of objects. All the code of our model is available on Github?
and project progress is reported on our website®.

Currently, the robot has acquired knowledge regarding 296 statements through
164 conversations held with 26 distinct people. These conversations were held for test-
ing the system and we have not evaluated the quality. In the future, we plan to carry
out experiments to measure the performance of our model. Intrinsic evaluations
should demonstrate the capacity to understand humans and the world, to acquire
knowledge, to acquire vocabulary and expressions, and to express drives to improve
the state of the brain. Extrinsic evaluations should demonstrate the user satisfaction,
the quality of the relationships and any high-level task that is modeled. For evalu-
ations, we need to create evaluation data and scenarios, define criteria and create
baselines and alternative models.
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