
	 1

Computational Linguistics and Intellectual Technologies:
Proceedings of the International Conference “Dialogue 2020”

Moscow, June 17–20, 2020

THE RUSSIAN LANGUAGE PIPELINE
IN THE LIMA MULTILINGUAL ANALYZER

Bocharov V. V. (victor.bocharov@cea.fr),
de Chalendar G. (gael.de-chalendar@cea.fr)
CEA LIST, LASTI, Gif-sur-Yvette, France

In this paper we describe the implementation of Russian language pipeline
in LIMA multilingual analyzer and the results obtained in GramEval-2020 shared
task. LIMA is a modular pipeline that implements rule-based and machine learn-
ing analysis components. Russian language pipeline includes deep neural net-
works based modules for tokenization, sentence segmentation, part of speech
tagging, lemmatization and dependency parsing. Part of speech tags, feature
tags and dependency trees conform to Universal Dependencies rules.

Key words: tokenization, part of speech tagging, dependency parsing,
lemmatization

DOI: 10.28995/2075-7182-2020-19-93-105

ОБРАБОТКА РУССКОГО ЯЗЫКА
В МНОГОЯЗЫЧНОМ АНАЛИЗАТОРЕ LIMA

Бочаров В. В. (victor.bocharov@cea.fr),
де Шаландар Г. (gael.de-chalendar@cea.fr)
CEA LIST, LASTI, Жиф-сюр-Иветт, Франция

В этой статье описана реализация обработки текста на русском языке
в анализаторе LIMA и наше участие в соревновании GramEval-2020.
Анализатор LIMA—это модульная система обработки текста, вклю-
чающая статистические и основанные на правилах компоненты. Об-
работка текста на русском языке реализована при помощи стати-
стических моделей на основе глубоких нейронных сетей и включает
токенизацию, морфологический анализ, лемматизацию и построение
деревьев зависимостей. Морфологический и синтаксический анализ
соответствуют правилам Universal Dependencies.

Ключевые слова: токенизация, морфологический анализ, синтакси-
ческий анализ, лемматизация

Bocharov V. V., de Chalendar G.﻿﻿﻿

2�

1.	 Introduction

The implementation of Russian language pipeline in LIMA is a part of our work
on expanding the range of supported languages using machine-learning techniques
and Universal Dependencies [16] corpora. LIMA is a modular multilingual toolkit that
includes a language agnostic core and a number of analysis modules sharing a com-
mon internal representation of text analysis. Our Russian language support is based
on Universal Dependencies annotation of the Russian-SynTagRus corpus, recent deep
neural networks models and fastText word embeddings. It includes a tokenizer (which
does both word and sentence splitting), a morphological analyzer combined with a de-
pendency parser and a lemmatizer. For our participation in GramEval-2020 shared
task, we trained another model using annotated corpora supplied by the organizers.

Source code of LIMA including all mentioned components is available on GitHub1.
Trained models are published in the form of Debian packages2. In the following sec-
tions, we will first describe related work and then each module in detail. We continue
with the evaluation of our results in the shared task before concluding.

2.	 Related Work

2.1.	Universal Dependencies

Universal Dependencies (UD) is an international project and a multilingual annota-
tion framework that provides a universal inventory of linguistic categories and annotations
guidelines covering tokenization, part of speech and features tagging and dependency
parsing. Within the UD project, a cross-linguistically consistent treebank annotation for
many languages is created. A new version of Universal Dependencies treebank collection
is released twice a year. Current version UD 2.5 includes 157 treebanks for 90 languages.

There exists a wide range of software3 (editor, visualising tools, consistency check-
ers and libraries) that works with Universal Dependencies annotation. UDPipe (see be-
low) is a widely known parsing pipeline that produces output following UD guidelines
for many languages.

2.2.	NLP pipelines and toolkits

There are many known pipeline-based natural language processing systems.
GATE (general architecture for text engineering) [4] is an open-source software tool-
kit originally developed at the University of Sheffield in 1995. GATE includes many
analysis modules (processing resources), graphical environment and an information
extraction system called ANNIE (A Nearly-New Information Extraction System).

1	 https://github.com/aymara/lima

2	 https://github.com/aymara/lima-models

3	 https://universaldependencies.org/tools.html

https://github.com/aymara/lima
https://github.com/aymara/lima-models
https://universaldependencies.org/tools.html

The Russian Language Pipeline in the LIMA multilingual analyzer

	 3

UIMA (Unstructured Information Management Architecture) [6] is an OASIS4
standard for content analytics developed at IBM, and Apache UIMA is an open-source
implementation of this standard. DKPro (The Darmstadt Knowledge Processing Soft-
ware Repository) is a collection of software components for natural language process-
ing based on the Apache UIMA framework.

Both GATE and UIMA provide pipeline-based frameworks and analysis modules.
Within GATE modules are mostly Java-developed. Apache UIMA provides both Java and
C++ frameworks and annotators can be written in Java, C++, Perl, Python and TCL.

Apache OpenNLP5 is a machine learning library that provides analysis compo-
nents for many NLP tasks: language detection, text segmentation, part of speech tag-
ging, named entity extraction, parsing and coreference resolution. It is also a Java-
based toolkit initially released in 2004.

NLTK (Natural Language Toolkit)6 [1] is a set of Python libraries for solving nat-
ural language processing tasks. In addition to analysis modules, NLTK includes also
corpora and lexical resources available through the same installer.

spaCy7 is another open-source Python library offering software components for
text analysis. spaCy is partially implemented using Cython8 and authors claim that
their main focus is to provide an industrial tool that is capable to operate at large
scale. AllenNLP9 is a framework for deep learning NLP created on top of spaCy and
PyTorch machine learning library.

UDPipe [20] is an open-source tool that implements NLP tasks required to repro-
duce Universal Dependencies 2.0 annotations: tokenization, sentence segmentation,
POS tagging, lemmatization and dependency parsing. UDPipe provides both training
and annotation functionality. Training part uses only Universal Dependencies anno-
tation without any supplementary data. UDPipe is written in C++ and bindings for
Python, Perl, Java and C# are provided. Several other tools able to analyze Universal
Dependencies corpora has participated to CoNLL 2017 and 2018 shared task entitled
Multilingual Parsing from Raw Text to Universal Dependencies [8], [21]. UDPipe Future
is the next version of UDPipe that is under development now.

UDify [12] is a single model for analysis of 75 languages with BERT-based en-
coder. It uses cased BERT-Base multilingual model pretrained on Wikipedia dumps
for 104 languages10. Original research paper describes different fine-tuning strategies
and their effect on high-resource and low-resource languages.

DeepPavlov is an open source framework for chatbots and virtual assistants de-
velopment. It includes dependency parsing module with RuBERT-based encoder [13].

4	 https://www.oasis-open.org/

5	 http://opennlp.apache.org/

6	 https://www.nltk.org/

7	 https://spacy.io/

8	 Cython—a compiled language that offers better performance and memory management for
Python-like code.

9	 https://allennlp.org/

10	 https://github.com/google-research/bert/blob/master/multilingual.md

https://www.oasis-open.org/
http://opennlp.apache.org/
https://www.nltk.org/
https://spacy.io/
https://allennlp.org/
https://github.com/google-research/bert/blob/master/multilingual.md

Bocharov V. V., de Chalendar G.﻿﻿﻿

4�

RuBERT is a monolingual BERT trained on the Russian part of Wikipedia and news
data. Initial weights of RuBERT were initialized with Google’s multilingual BERT.

2.3.	LIMA

LIMA [2] is a C++ toolkit and a pipeline-based analysis framework developed
by LASTI laboratory of CEA LIST. It was designed and developed with several objectives:

•	 multilingualism—an ability to work with a broad spectrum of languages;
•	 diversity of use-cases—LIMA must be useful as a basic component for various

text-processing applications such as question-answering systems, automatic
summarization, etc.;

•	 extensibility—an architecture that makes it possible to easily add new function-
ality or replace the implementation of existing components;

•	 efficiency—LIMA must be able to process large corpora and work in an industrial
context.

LIMA consists of core components defining graph-based language-independent
representation of entities like linguistic analysis and processing module and a collec-
tion of modules providing several types of functionality including:

•	 input/output modules: source text readers and analysis writers in various formats,
•	 dictionary-based and OOV-words annotators,
•	 POS tags disambiguators,
•	 named-entities taggers,
•	 rule-based syntactic analyzers.

Processing modules are executed sequentially and the order of execution is de-
fined by pipeline configuration. All modules have access to a shared graph-based anal-
ysis representation. Input-related modules create this representation. Next modules
update and enrich analysis and output modules dump generated data into target file
format. A shared analysis representation allows modules to be interchangeable to the
extent that this is limited by natural dependencies between analysis steps.

Previously, LIMA had rule-based and statistical analysis components implemented
for three languages (English, French, and Portuguese) under a free licence and for some
other languages commercialy only (German, Spanish, Mandarin Chinese and Arabic)
plus some experiments (Russian, Japanese, Czech...). And although the same internal rep-
resentation of the analysis was built for each of the mentioned languages, the sets of tags
for morphological and syntactic categories were defined separately. To support more lan-
guages we followed Universal Dependencies 2.0 tagset for parts of speech, features and
syntactic dependency labels and developed fully machine learning-based modules.

3.	 Analysis modules based on deep neural networks

The pipeline approach in the architecture of text analyzers together with rule-
based implementations of analysis components offer high flexibility in configuration
and explainability of analysis results. At the same time, the development of these

The Russian Language Pipeline in the LIMA multilingual analyzer

	 5

rule-based modules is expensive as it involves a lot of human labor. Moreover, most
of the rule-based analysis components are difficult to port from one language or do-
main to another. Machine learning methods are easier in portability and with recent
progress in deep neural network architectures, they surpass many rule-based meth-
ods in analysis quality. Below we describe our deep neural networks based modules.

3.1.	Tokenizer

For token and sentence segmentation we adapt the character labeling approach
proposed in Universal segmenter [18]. It is based on bidirectional recurrent neural net-
works with conditional random fields (BiRNN-CRF) and Viterbi decoder (Figure 2).
The tagset consists of token segmentation tags (B—begin of token, I—inside token,
E—last character of token, S—single-character token, X—outside of token) and sen-
tence segmentation tags (T—last single character token in the sentence, U—last char-
acter of the last token in the sentence).

Figure 1: Characters tagging schema

Three concatenated embeddings are given on each RNN step:

•	 the embedding of the unigram (current character only);
•	 the embedding of the bigram including previous character and current one;
•	 the embedding of the trigram that includes previous, current and next characters.

Figure 2: Tokenizer neural network

Bocharov V. V., de Chalendar G.﻿﻿﻿

6�

The dimension of each embedding is calculated at training time as the fourth-de-
gree root of the number of different n-grams of given length found in the training set. This
makes the model smaller for most of languages without significant quality reduction.

Table 1: N-gram embeddings dimensions for
model trained on Russian-SynTagRus

Min. frequency Number of ngrams Dimension

Unigram 3 153 4
Bigram 4 3,217 8
Trigram 10 12,653 12

Total 24

3.2.	Morphological Tagger and Dependency Parser

The morphological tagger assigns part of speech tags and feature tags for each
word in the sentence. For this purpose, we use a similar sequence labeling approach
as described above for tokenization. As soon as there are many different types of tags
(part of speech tags, number, gender, case, etc), a dedicated classifier is required for
each type. We use single BiRNN input for all types of tags with different CRF outputs
for each classifier. CRF outputs for taggers are connected to a second BiRNN layer.
Remaining layers are used by the dependency parser only.

For dependency parsing, we adapted graph-based parser [11] with deep biaffine
attention arcs scoring method [5]. Arc scorer is attached on top of the concatenation
of the output of the same BiRNN that is used for morphological tagging and dedicated
BiRNN that is used for dependency parsing only. All these tasks (i.e. morphological
tagging and dependency parsing) are trained simultaneously.

The BiRNN that is shared by taggers and parser has an input that consists of pre-
trained word embeddings for all words and trained word embeddings for frequent
words. The sum of word embeddings of these two types is concatenated with the final
state of character-level RNN for the corresponding word.

FastText word embeddings with subword information are used as pre-trained
word embeddings. In fastText, model word vectors are calculated as an element-wise
average of word vector and vectors of all its subwords. In case of out-of-vocabulary
words the first element isn’t available and subwords vectors only are used [3]. The
choice of fastText instead of word2vec [15] or Glove [17] is made for two reasons:
fastText provides pretrained models [7] for most languages available in the Universal
Dependencies collection, and subword information gives meaningful word vectors
even for OOV-words.

The Russian Language Pipeline in the LIMA multilingual analyzer

	 7

Figure 3: Taggers and dependency parser neural network

3.3.	Lemmatizer

The lemmatizer uses the source form of the word and morphologic tags (part
of speech and features tags) predicted on the previous step. The lemmatization task
is treated as a sequence-to-sequence translation problem at the character level. Our
approach is similar to the one adopted in Turku Neural Parser Pipeline [10]: surface
word form together with predicted tags is given as input. Instead of encoding tags
in form of strings we add them as embeddings of tags to the encoder as initial state.
Seq2seq neural network with Bahdanau attention is used (Figure 4).

Lemmatization as it is described above is a context-independent task: the neigh-
boring words aren’t used to predcit lemma. This makes it possible for the lemmatizer
to use the dictionary of pre-lemmatized words (lemmatizer cache) to improve the
analysis speed. The lemmatizer cache generated from Russian-SynTagRus training
set increases test set lemmatization speed by 2.5 times.

Bocharov V. V., de Chalendar G.﻿﻿﻿

8�

Figure 4: Lemmatizer neural network

4.	 Embedding Compression

The model size is an important practical issue that can limit the usage of the soft-
ware on low-memory devices. The largest part of the model described above is a fast-
Text embedding file that takes between 2.5 and 7.3 Gb depending on the language.
Tokenizer, morphological tagger, dependency parser, and lemmatizer together take
no more than 2% of the total model size. Thus the most important step toward mem-
ory footprint reduction is the compression of embeddings.

FastText embeddings file consists of four parts:
•	 word embedding table;
•	 n-grams embedding table;
•	 output table;
•	 dictionary.

The output table isn’t used to calculate word embeddings and can be discarded.
With remaining parts following reduction strategies are possible: dimensionality re-
duction, pruning and quantizing. Within the scope of this work, we have tried word
and n-grams embedding tables pruning and quantizing [9].

In the case of pruning, we have removed 50% of the least frequent words and
50% of the least frequent n-grams. By default, both embedding tables and the diction-
ary have 2,000,000 entries each (i.e. 4,000,000 embeddings in total) and the resulting
file contains 1,000,000 most frequent words and 1,000,000 most frequent n-grams.

For quantization, we used product quantization from the fastText library that
consists of the approximation of real-valued vectors by the closest vector in a pre-de-
fined set of centroids. This implementation splits each vector into several sub-vectors

The Russian Language Pipeline in the LIMA multilingual analyzer

	 9

(subquantizers) and maps each one to some pre-defined point. The number of these
pre-defined points and the number of subquantizers are two parameters. The first one
is fixed to 256 possible values (8 bits per centroid index) and the second one is vari-
able. With k = 1 each real-valued element (32 bit float) of source vector is replaced
by 1 byte integer value giving 4:1 compression rate. With k = 2 each pair of float32 val-
ues is mapped to 1 byte integer giving 8:1 compression rate. This way the embeddings
file can be compressed while all entries in words and n-grams tables are preserved.

In Table 2 we compare the effect of mentioned above compression techniques
on analysis metrics. The possible combination of pruning and quantization remains for fu-
ture investigation. The models we distribute include embeddings compressed with a 8:1 ra-
tio. Embeddings with a 4:1 ratio are published separately11 due to hosting size restrictions.

Table 2: The degradation of the analysis evaluation
metrics with embeddings compression

File size UPOS UAS LAS

original 6.9Gb 98.34 91.87 90.20
original w/o output table 4.6Gb 98.34 91.87 90.20
50% pruning 2.7Gb 98.33 (−0.01) 91.86 (−0.01) 90.19 (−0.01)
4:1 quantization 1.2Gb 98.33 (−0.01) 91.85 (−0.02) 90.17 (−0.03)
8:1 quantization 0.6Gb 98.31 (−0.03) 91.82 (−0.05) 90.10 (−0.10)

5.	 Evaluation

We compare LIMA performance on Russian-SynTagRus corpus using the offi-
cial CoNLL 2018 evaluation script and on GramEval-2020 [14] corpus using its of-
ficial evaluation script. The use of the evaluation script from CoNLL 2018 competition
is motivated by the intention to compare our results with previous works.

Both scripts evaluate part of speech tags, morphologic features, lemmatisa-
tion and syntax. Tokenization and sentence segmentation were not included into
GramEval-2020 and this functionality of the analyser is evaluated only with CoNLL
2018 script on Russian-SynTagRus.

5.1.	Evaluation on the Russian-SynTagRus corpus

LIMA has been evaluated in two settings: with the full analysis pipeline and with
the gold tokenization and sentence segmentation. The metrics (F1 scores) are provided
in Table 3. For comparison, we included the evaluation results of the version 1.2.0
of UDPipe (CoNLL 2018 baseline) and the results of CoNLL 2018 participants which
obtained the best result on one of the evaluation metrics12.

11	 https://zenodo.org/record/3629537

12	 CoNLL 2018 results are given according to official site. UDPipe Future evaluation metrics
with gold segmentation are given according to UDify paper.

https://zenodo.org/record/3629537

Bocharov V. V., de Chalendar G.﻿﻿﻿

10�

LIMA significantly outperforms UDPipe v1.2.0 in morphologic and syntactic
tasks in all measurement settings but stays behind the best results of CoNLL 2018.
Syntactic metrics (UAS and LAS) depends more on the quality of segmentation than
part-of-speech, morphologic features and lemmata. BERT-based systems (UDify and
DeepPavlov) are significantly better in syntactic metrics than all other systems.

Table 3: Performance metrics (F1) for Russian-SynTagRus corpus

Tokens Sentences UPOS UFeats Lemmas UAS LAS

LIMA 99.5 98.6 98.3 96.1 96.1 91.8 90.2
UDPipe v1.2.0 99.6 98.8 97.8 93.5 96.5 87.6 85.0
CoNLL 2018 shared task results
HIT-SCIR 99.6 98.0 98.6 93.6 95.5 93.9 92.5
NLP-Cube 99.7 98.8 98.4 96.2 92.3 92.7 90.9
Stanford 99.6 98.9 98.3 95.8 97.0 93.1 91.6
Turku NLP 99.6 98.0 98.0 96.6 98.2 93.2 91.7
UDPipe Future 99.6 98.6 98.7 97.2 97.9 93.0 91.5
Results with gold segmentation
DeepPavlov 97.6 95.7 95.2 93.7
LIMA 98.8 96.5 94.7 92.7 91.0
UDPipe v1.2.0 98.2 93.9 96.9 88.3 85.7
UDPipe Future 99.1 97.6 98.5 93.8 92.3
UDify+Lang 99.1 97.2 96.6 95.1 93.7
Results with gold segmentation and morphology
UDPipe v1.2.0 90.3 89.0

5.2.	Evaluation on the GramEval-2020 corpus

For GramEval-2020 evaluation (Table 4), gold tokenization and sentence seg-
mentation were given. Official evaluation scripts provide accuracy metrics for part-
of-speech, morphologic features, lemmata and LAS. Overall score is an average of the
four metrics mentioned above.

On GramEval-2020, metrics aren’t directly comparable with metrics men-
tioned in previous section due to different method of calculation. Nevertheless
the situation is similar: BERT-based systems (ADVance and qbic) are still better
on GramEval-2020.

Table 4: Performance metrics (accuracy) for the GramEval-2020 corpus

Overall PoS Feats Lemmas LAS

Baseline 80.4 91.0 89.6 86.4 54.5
Vocative 85.2 92.8 89.8 88.5 69.6
Lima 87.9 95.1 95.3 88.2 73.0
ADVance 90.8 95.4 95.8 93.1 78.8
qbic 91.6 95.9 96.0 93.4 81.3

The Russian Language Pipeline in the LIMA multilingual analyzer

	 11

5.3.	Analysis speed

The analysis speed is an important characteristics of parser and it directly influ-
ences its prcatical applicability. There are many factors that influence analysis speed,
including: analysis method, model size, underlying computation library, hardware
used, compilation options etc. In the table below we provide the analysis speed com-
parison of several parsers. All the evaluations were performed on laptop with Intel
i7‑8650U CPU (4 cores, 8 threads) and 32Gb of RAM except UDPipe Future. Figures
for UDPipe Future are taken from corresponding article [19]. Here are some impor-
tant details regarding these measurements:

•	 spaCy and AllenNLP have no models for Russian language. We used models for
English.

•	 spaCy and UDPipe run in single-thread mode. To make the comparison more
meaningful we started the same analysis 8 times in parallel.

•	 Only dependency parsing13 without morphologic features have been tested for
DeepPavlov.

•	 Although CPU we used for these experiments is capable to run up to 8 threads
simultaneously, not all analyzers used all of them all the time.

•	 UDPipe v1.2.0 and TensorFlow library used by LIMA were compiled with
“-march = native” gcc compilation option. All other software have been installed
from official repositories without compilation.

Table 5: Analysis speed comparison on CPU

Method Threads Speed (tok/sec)

spaCy (en_core_web_sm) transition-based signle 2,728
spaCy (en_core_web_sm) transition-based multi 9,043
UDPipe v1.2.0 transition-based single 3,000
UDPipe v1.2.0 transition-based multi 12,000
AllenNLP (English) RNN + graph-based multi 250
LIMA (with cached lemmata) RNN + graph-based multi 430
LIMA (w/o cached lemmata) RNN + graph-based multi 327
UDPipe Future RNN + graph-based multi 517
DeepPavlov BERT + graph-based multi 166
UDify BERT + graph-based multi 108

From these data the difference in analysis speed between transition-based and
graph-based parsers is clearly seen. LIMA shows an average speed comparable to other
implementations of the same method.

6.	 Conclusion and future works

Our first implementation of neural network-based modules for LIMA obtains re-
sults at the level of the best systems that participated to CoNLL-2018. Current results

13	 The model name is “syntax_ru_syntagrus_bert”.

Bocharov V. V., de Chalendar G.﻿﻿﻿

12�

in GramEval-2020 show that transformers-based models are necessary to reach to-
day’s state of the art. Anyway, LIMA is readily available for users, easily installable
using simple packages.

Our future work include using BERT-like models to reach state of the art per-
formance but also working on analysis speed to make LIMA neural network modules
usable in production settings.

References

1.	 Bird, S. et al.: Natural language processing with python. (2009).
2.	 Besançon, R. et al.: LIMA: A multilingual framework for linguistic analysis and

linguistic resources development and evaluation. Presented at the May (2010).
3.	 Bojanowski, P. et al.: Enriching word vectors with subword information. arXiv

preprint arXiv:1607.04606. (2016).
4.	 Cunningham, H. et al.: GATE: A framework and graphical development environ-

ment for robust nlp tools and applications. In: Proceedings of the 40th Anniver-
sary Meeting of the Association for Computational Linguistics (ACL’02). (2002).

5.	 Dozat, T., Manning, C. D.: Deep biaffine attention for neural dependency parsing.
ArXiv. abs/1611.01734, (2016).

6.	 Ferrucci, D. et al.: Unstructured information management architecture (UIMA)
version 1.0, https://docs.oasis-open.org/uima/v1.0/uima-v1.0.html, (2009).

7.	 Grave, E. et al.: Learning word vectors for 157 languages. In: Proceedings of the
international conference on language resources and evaluation (lrec 2018).
(2018).

8.	 Hajič, J., Zeman, D. eds: Proceedings of the conll 2017 shared task: Multilingual
parsing from raw text to universal dependencies. Association for Computational
Linguistics, Vancouver, Canada (2017).

9.	 Joulin, A. et al.: FastText.zip: Compressing text classification models. arXiv pre-
print arXiv:1612.03651. (2016).

10.	 Kanerva, J. et al.: Turku neural parser pipeline: An end-to-end system for the
CoNLL 2018 shared task. In: Proceedings of the CoNLL 2018 shared task: Mul-
tilingual parsing from raw text to universal dependencies. pp. 133–142 Associa-
tion for Computational Linguistics, Brussels, Belgium (2018).

11.	 Kiperwasser, E., Goldberg, Y.: Simple and accurate dependency parsing using
bidirectional lstm feature representations. Transactions of the Association for
Computational Linguistics. 4, 313–327 (2016).

12.	 Kondratyuk, D., Straka, M.: 75 languages, 1 model: Parsing universal depen-
dencies universally. In: Proceedings of the 2019 conference on empirical meth-
ods in natural language processing and the 9th international joint conference
on natural language processing (emnlp-ijcnlp). pp. 2779–2795 Association for
Computational Linguistics, Hong Kong, China (2019).

13.	 Kuratov, Y., Arkhipov, M.: Adaptation of deep bidirectional multilingual trans-
formers for russian language, (2019).

https://docs.oasis-open.org/uima/v1.0/uima-v1.0.html

The Russian Language Pipeline in the LIMA multilingual analyzer

	 13

14.	 Lyashevskaya, O. et al.: GramEval 2020 Shared Task: Russian Full Morphology
and Dependency Parsing. In: Computational linguistics and intellectual tech-
nologies: Papers from the annual conference “dialogue”. (2020).

15.	 Mikolov, T. et al.: Efficient estimation of word representations in vector space.
CoRR. abs/1301.3781, (2013).

16.	 Nivre, J. et al.: Universal dependencies v1: A multilingual treebank collection.
In: Proceedings of the tenth international conference on language resources and
evaluation (LREC’16). pp. 1659–1666 European Language Resources Associa-
tion (ELRA), Portorož, Slovenia (2016).

17.	 Pennington, J. et al.: GloVe: Global vectors for word representation. In: Empirical
methods in natural language processing (emnlp). pp. 1532–1543 (2014).

18.	 Shao, Y. et al.: Universal word segmentation: Implementation and interpreta-
tion. Transactions of the Association for Computational Linguistics. 6, 421–435
(2018).

19.	 Straka, M.: UDPipe 2.0 prototype at CoNLL 2018 UD shared task. In: Proceed-
ings of the CoNLL 2018 shared task: Multilingual parsing from raw text to uni-
versal dependencies. pp. 197–207 Association for Computational Linguistics,
Brussels, Belgium (2018).

20.	 Straka, M., Strakova, J.: Tokenizing, pos tagging, lemmatizing and parsing
ud 2.0 with udpipe. Presented at the January (2017).

21.	 Zeman, D., Hajič, J. eds: Proceedings of the CoNLL 2018 shared task: Multilin-
gual parsing from raw text to universal dependencies. Association for Computa-
tional Linguistics, Brussels, Belgium (2018).

	Bocharov V. V. & de Chalendar G.: The Russian Language Pipeline in the LIMA multilingual analyzer
	Introduction
	Related Work
	Universal Dependencies
	NLP pipelines and toolkits
	LIMA

	Analysis modules based on deep neural networks
	Tokenizer
	Morphological Tagger and Dependency Parser
	Lemmatizer

	Embedding Compression
	Evaluation
	Evaluation on the Russian-SynTagRus corpus
	Evaluation on the GramEval-2020 corpus
	Analysis speed

	Conclusion and future works
	References

