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standardized datasets, as well as experiments with state-of-the-art models,
are rare. In this work, we i) provide a novel reference dataset for Russian lan-
guage modeling, ii) experiment with popular modern methods for text gener-
ation, namely variational autoencoders, and generative adversarial networks,
which we trained on the new dataset. We evaluate the generated text regard-
ing metrics such as perplexity, grammatical correctness and lexical diversity.
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1. Introduction

Text generation is a key component in many NLP systems that produce text such
as translation systems, dialogue systems, or text summarization. The quality of the
generated text is critical in these systems, it should be coherent and well-formed,
without grammatical mistakes, and semantically meaningful [5]. Generating human-
like text is challenging, it includes modeling high-level syntactic properties and fea-
tures like sentiment and topic [ 1].

Natural Language Generation (NLG) produces human-understandable NL text
in a systematic way—based on non-textual data (eg. a knowledge base) or from mean-
ing representations (eg. a given state of a dialogue system) [16]. Modern NLG systems
often make use of (neural) language models [18]. A language model (LM) is a prob-
ability distribution over a sequence of words, and can be used to predict the next word
given an input sequence.

Inrecent years, various types of neural network architectures have been success-
fully applied in NLG, such as variational autoencoders (VAE) [1], [21], generative ad-
versarial networks (GAN) [3], [5], [22], and recurrent neural networks (RNN) [11].
Here, we experiment with those architectures on Russian language.

The goals of this paper are (i) to create a reference dataset for language modeling
for the Russian language, comparable to the popular Penn Tree Bank (PTB) dataset
for English language, and (ii) to adapt and to train several state-of-the-art language
models and to evaluate them on the task of Russian language text generation. We cre-
ate a dataset of 236K sentences by sampling from the Lenta News dataset, preprocess
the text, and filter sentences that do not match certain quality criteria. Then we train
six models (four VAE models with different scheduling methods, seqGAN, and LSTM
RNNLM) on the new corpus, and evaluate them regarding the perplexity metric, and
manually validate 100 sentences for each model regarding grammatical correctness.
We achieve best results with the VAE models, the zero variant performs well regard-
ing perplexity, but overall the cyclical VAE model shows the highest performance,
as it generates the largest fraction of grammatically correct sentences, which have
similar characteristics (sentence length, etc.) as the training data.

2. Related Work

Our Russian language dataset is inspired by the plain-text/language-modeling
part of the PTB dataset!. PTB contains about 1M words from 1989 Wall Street Jour-
nal material, with various annotations such as POS-tags. This dataset is very popu-
lar among NLP researchers for language modeling and other NLP tasks. Many recent
language models are trained and evaluated also on larger corpora, such as Wiki-
Text-103 [12], or WebText [17] (created for the GPT transformer models). For lan-
guages other than English high-quality reference datasets are rare.

In language modeling, Recurrent Neural Network Language Models (RNNLM)
[14], and extensions such as long short-term memory (LSTM) [19], are frequently used
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architectures. RNNLMs generate text word-by-word depending on a hidden state that
summarizes the previous history. These models are able to capture long-range depen-
dencies, however, they do not expose interpretable states that represent global features
like topic or sentiment. Regarding recent RNNLMs, for example Merity et al. [11] in-
vestigate different strategies for regularizing and optimizing LSTM-based models.

Variational Autoencoders (VAEs) [6] have been applied to many domains, includ-
ing language modeling [1], [21]. They showed impressive results in producing interpre-
table representations of global features like the topic or of high-level syntactic proper-
ties. For example, Yang et al. [21] use the method for unsupervised clustering of the
text. VAEs are trained using regularization to avoid overfitting and produce a regular la-
tent space that has properties enabling the generative process. Recent research on VAEs
focuses on improving the quality of the hidden representation, on exploring the proper-
ties of the latent space, and experiments with different architectures to improve VAEs.

Generative adversarial networks GANs [4] train a generator that tries to produce
realistic samples from a data distribution. The generator is guided by a discriminator
on how to modify its parameters. GANs have been applied successfully to computer vi-
sion tasks, however, adapting GANSs to generate texts is challenging due to the discrete
nature of natural language. Many attempts to adopt GANSs to text rely on using rein-
forcement learning [3], [22], or on Gumbel-Softmax approximation [9] (a continu-
ous approximation of the softmax function). Zhang et al. [23] use a feature matching
scheme for training GANSs to generate realistic-looking text.

Little work exists on NLG for the Russian language. Nesterenko [ 15] uses a simple
template-based system to generate stock market news in Russian. Kipyatkova and Kar-
pov [7] study the use of RNNLM models in Russian speech recognition. Kuratov and
Arkhipov [8] train a BERT (transformer) language model on Russian text (RuBERT)
and evaluate it on tasks such as paraphrase and sentiment detection. Finally, Shimorina
et al. [20] present an English-Russian parallel corpus for generating natural language
text from the triples of a knowledge base (data-to-text NLG). Their corpus was created
with neural machine translation. However, to the best of our knowledge, for general
Russian NLG no research work has been published about general-domain NLG datasets
and about the evaluation of NLG models based on modern neural architectures.

3. Variational Autoencoder

In this section, we introduce the VAE variants (zero, constant, linear, cyclical)
which are applied in the experiments. An autoencoder (AE) consists of an encoder
that encodes an input sequence into a hidden state and a decoder that uses this hidden
state to reconstruct the original sequence. In a standard AE for language modeling,
an RNN is used for both the encoder and the decoder. The decoder is then used for text
generation, where each output token is conditioned on the previous output tokens.
A Variational Autoencoder (VAE) encodes the input sequence x into a region in the
latent space rather than a single point, this region is defined using a multi-variate
Gaussian prior p(z), where the last hidden state of the encoder (2) is projected on two
separate vectors. These vectors represent the mean and the diagonal co-variance
matrix of the prior. To restore the original sequence, the initial state of the decoder
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is sampled from the prior, and then used to decode the output sequence. This way,
the model is forced to be able to decode plausible sentences from every point in the
latent space, that has a reasonable probability under the prior [1]. A standard recur-
rent neural network language model is based on a series of next-step predictions, thus
astandard AE does not provide an interpretable representation of global features such
as the topic or of high-level syntactic properties.

The VAE modifies the AE architecture by replacing the deterministic encoder
with a learned posterior recognition model q(z|x). If the VAE were trained with
standard AE reconstruction objective, it would learn to encode x deterministically
by making q(z|x) vanishingly small. However, we want the posterior to be close to the
prior (most often standard Gaussian), therefore we have two objectives and the goal
is to optimize the following lower-bound:

L©;0) = — KL@OG|0)|[p@) + E. ~ 0o llog pb&|2)] < logpG) (1)

The first term is the KL-divergence of the posterior from the prior, and the second
is the reconstruction loss, where 6 stands for the parameters of the neural network.
Straightforward training of the network using this objective will bring q(z|x) to be ex-
actly the same as the prior p(z), and KL-divergence term in the cost function to zero.
As a result, the model will behave like a standard RNNLM. Bowman et al. [1] use
KL-cost annealing to solve this problem, by multiplying a variable weight g with the
KL term at training time. In the beginning, g will be set to zero, and then it gets gradu-
ally increased, forcing the model to smooth out its encodings and pack them into the
prior. Later research by Fu et al. [10] investigates KL annealing further, they experi-
ment with three scheduling approaches:

* Constant Schedule: the standard approach is to keep f = 1 fixed during train-
ing, which causes the vanishing of the KL-term, the model will behave as a stan-
dard RNNLM.

* Monotonic (linear) Annealing Schedule: this is the previously described ap-
proach for VAEs by Bowman et al. [1]. It starts with § = 0 and gradually in-
creases during training to f = 1.

* Cyclical Annealing Schedule: split the training process into M cycles, each cycle
consists of two stages:

1. Annealing, where f8 is annealed from O to 1 in the first R[T/M] training steps
over the cycle; R: proportion used to increase f3, T: the total number of global
steps, M: the number of cycles.

2. Fixing: fix § = 1 for the rest of the cycle.

According to Fu et al. [10] cyclical KL-annealing results in better latent codes
by leveraging the informative representations of previous cycles as warm re-starts.

4. SeqGAN

A Generative Adversarial Network (GAN) contains two main models: the dis-
criminator D is trained to distinguish between real and fake data and the generator G,
which is trained to fool D and tries to generate samples from the real data distribution.
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D and G are trained simultaneously, the improvement in one model will cause further
improvements in the other model. When G is able to produce samples from the same
data distribution as the real data, D will be no longer able to distinguish between real
and sampled data.

GANs were applied successfully to tasks in computer vision. However, adapting
GANSs to text generation is not straightforward, because the original GAN works with
continuous data, meanwhile, text is discrete and the generator uses a non-differential
function to produce each token, therefore it is difficult to pass gradient updates from
D to G. Another difficulty is that D can evaluate only the completed text; for a partially
generated sequence the evaluation score depends on the score of the full sentence.

To address these problems, Yu et al. [22] use Reinforcement learning to train
GAN:Ss for text generation. The generator is treated as an agent of reinforcement learn-
ing, and the state corresponds to the generated tokens up to this moment and the ac-
tion is the next token to be generated. A discriminator will give the feedback reward
that guides the learning process.

We can consider G as a stochastic parametric policy where Monte Carlo (MC) search
isused to approximate the state-action value using the policy gradient. D is trained by pro-
viding positive examples from the real data and negative examples from the generated
samples by G. G is updated using the policy gradient and MC search by the reward signal
received from D. The reward represents how likely the discriminator is fooled by the
generator. Yu et al. [22] use a rollout policy with MC search, they set the rollout policy
the same as G during the experiments. For G they choose a recurrent neural network
with LSTM cells, and D uses a convolutional neural network with highway architecture.

The training strategy is as follows: first G is pre-trained using maximum likeli-
hood estimation, then G and D are trained alternatively. To train D, at each training
step we sample negative examples using G and use examples from the true data as the
positive examples.

Word Counts histogram »
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Figure 1: a) A histogram visualizing the number of words per
sentence which shows the probability distribution of the data,
b) A box plot for the number of words per sentence
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5. Dataset

In this section we discuss the Russian language dataset for language modeling,
its creation, and characteristics.

Penn Tree Bank (PTB) [13] is a very popular dataset for experimenting with lan-
guage models, and many researchers use it in experiments with the same settings (da-
taset splits, etc.)—which allows to compare different language modeling approaches.
PTB is heavily preprocessed, and the dataset vocabulary is limited to 10,000 tokens
with no numbers, punctuation or capital letters.

Our goal was to create a similar reference dataset for the Russian language. Our
dataset is based on the Lenta news dataset?, a corpus of over 800K Russian news articles
collected from Lenta.Ru between 1999-2019. To create our dataset we randomly sample
sentences from the Lenta dataset after we apply preprocessing in a similar way as in PTB.

The preprocessing pipeline includes: a) lower-casing the text, b) replacing all URLs
with a special token <url>, ¢) separating punctuation symbols from neighboring to-
kens with spaces, and finally d) replacing digits with a special character D, and for any
5 or more consecutive digits we use the special character N. Therefore, numbers in the
dataset will take the following forms: D, DD, DDD, DDDD, or N. Step d) helps to keep
meaningful numeric tokens, such as in these examples:

¢ yactb D craTtbu DDD yk
* BCTpeua TaK U 3aBepuIuach co cueToM D : D
e B DDDD rogy, rockopnopanus obecrneuyrBaet DD MpoIieHTa 3JIeKTPOIHEPTHH .

Subsequently, we apply the NLTK® PunktSentenceTokenizer* to tokenize the text
into sentences. We create a dictionary using the 15,000 most frequent tokens, and
replace all other tokens in the text with <UNK>. In contrast to PTB, which uses a dic-
tionary size of 10,000, we decided to keep 15,000 tokens because of the rich morphol-
ogy of the Russian language where nouns, adjectives, and verbs change forms accord-
ing to their role in the sentence.

Finally, we create the Russian language corpus by sampling 200,000 examples
for the training set, 16,000 for the development set and 16,000 for the test set. In the
sampling process, we only accepted sentences which fulfill the following conditions:

e The sentence contains less than 40 tokens.

* The sentence does not include any English words.

e The number of single (°) and double (") quotation marks is even (balanced).
* Every opening bracket is followed by a closing bracket (balancing condition).
e Less than 10% of the tokens in the sampled sentence are the <UNK> token.

The dataset and code are available on GitHub®. Finally, we provide an overview
of dataset statistics, including the mean number and standard deviation of the number



https://github.com/yutkin/Lenta.Ru-News-Dataset
https://nltk.org
https://github.com/Mottl/ru_punkt
https://github.com/zeinsh/lenta_short_sentences

Russian Natural Language Generation: Creation of a Language modeling Dataset and Evaluation

of tokens per sentence in Table 1. The histogram and the box plot in Fig. 1 show the
distribution of sentence length (number of tokens) in the dataset. Those statistics will
be helpful to compare the sentences generated with various methods (see next sec-
tion) with the original dataset.

Table 1: An overview of the Russian language modeling
corpus (statistics of training, development and test set)

Training set Development set Test set

#examples 200,000 16,000 16,000
Mean #tokens per example 13.26 13.17 13.14
Stddev for #tokens per example 5.63 5.66 5.62
#unique tokens 14,511 13,398 13,401

6. Experiments

6.1. Evaluation Setup

We experiment with the following popular text generation methods: VAE, GAN,
and RNN.

For the VAE method, we build on the implementation by Baumgértner® and add
the implementation of additional scheduling methods, namely cyclical, constant and
zero scheduling. Constant and cyclical scheduling are explained in Section 3, and
in the zero schedule we set f = 0, which excludes the KL-divergence term from the
lower-bound computation in equation (1). For the VAE encoder, we use 300-dim in-
put embeddings, a single layer of 256 LSTM cells, and a latent vector (bottleneck) size
of 16, and in the decoder again 256 LSTM cells and a 300-dim output. We train the
VAE:s for 10 iterations with an embedding dropout probability of 0.5.

The experiments with seqGAN are based on the PyTorch implementation on
GitHub’, We modified the original implementation to adapt it to our text dataset in-
stead of discrete numbers created by the oracle generator in the original implementa-
tion. For seqGAN, we also use 300-dim input embeddings, and a single layer of 256
LSTM cells. We pretrain G for 10 iterations with an embedding dropout probability
of 0.5, and then pretrain D (10 iterations). Then follow 10 epochs of adversarial train-
ing, each of which trains G for one iteration and D for five iterations. Finally, to mea-
sure the effect of the adversarial training on the RNNLM, we performed an evaluation
on the pre-trained LSTM generator separately as RNNLM (see Section 6.2).

For evaluation, we use a dual strategy. First, in line with most research on lan-
guage modeling, we calculate the perplexity on the test set for each model. Perplexity
is a measure of how well a probability distribution predicts a sample. Perplexity does
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not always correlate with human correlation, in fact there is sometimes a negative cor-
relation [2], for this reason we also include an human expert evaluation (see below).

Furthermore, we generate 10,000 sample texts with each method by greedily
sampling word by word. Examples of the results are given in GitHub repository® and
in Appendix 1. For the generated samples we use expert evaluation, where a Russian
native speaker checks the generated text for grammatical correctness, and assigns
a score of either 1 or 0. The value 1 signifies that no grammatical mistakes were found
in the text. As we manually evaluate 100 unique sentences for each model, the maxi-
mum score per model is 100.

6.2. Evaluation Result

Here we analyze the models with regards to the following aspects: perplexity, to-
ken statistics of generated text, and manual evaluation of grammatical correctness. Fur-
thermore, for VAE models we discuss the spatial distribution of latent representations.

In Table 2 we report on the perplexity metric for the test set. The zero VAE
model clearly shows the best results, followed by the cyclical model. As we will see
in Tables 3 and 4, despite good results on perplexity, the zero model does not excel
in grammatical correctness of the generated text.

Table 2: Perplexity calculated on test set for each model

X zero constant linear cyclical RNNLM @ seqGAN
perplexity 7.19 16.27 14.36 14.11 27.88 27.93

Table 3 gives an overview of some statistics of the generated text samples.
We can see that LSTM RNNLM, seqGAN, and especially the zero variant of VAE pro-
duce a large number of unique sentences—with very little overlap with the training
sentences. On the other hand, the constant VAE model fails to generate a large vari-
ety of sentences. Liu et al. [10] argue that the constant schedule ignores z and treats
it as noise. Regarding sentence length, most models are similar, except constant, which
creates shorter sentences. More interestingly, the zero and constant model show little
variance in sentence length, while the other models much better capture the variance
in sentence length of the training dataset. Finally, only RNNLM and seqGAN are able
to have a diversity in vocabulary similar to the training data.

As mentioned, a Russian native speaker manually verified 100 generated sen-
tences for each model regarding grammar. The results (number of grammatically
correct sentences) are presented in Table 4. The data clearly shows that the cyclical
VAE model performs very well (91% correct sentences), while the zero VAE model,
although providing low perplexity, produces many grammatically wrong sentences.
This corresponds with Chang et al. [2], ie. that perplexity does not always correlate
with human evaluation. In our experiments, RNNLM and seqGAN fail to generate
a high ratio of grammatically correct sentences.
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Table 3: Comparison between models regarding uniqgueness
and sentence length of the generated data

zero constant linear cyclical RNNLM seqGAN

# unique sent. (out | 10,000 231 8,810 8,868 9,972 9,979
of 10000)

# unique sent. not 10,000 225 | 8,694 8,752 9,972 9,979
in train-set

Mean #tokens per 10.52 8.60 | 11.89 11.25 13.53 13.89
sample

Std-dev of # tokens 2.25 2.27 5.08 4.78 5.99 6.08
per sample

# unique words 5,324 353 | 5,028 4,550 11,430 11,505

Table 4: Number of grammatically correct sentences
(out of 100) checked by a native speaker

zero constant linear cyclical RNNLM seqGAN
Score 77 79 86 91 43 51

Fig. 2 shows a projection of the latent representations in the development set into
2D space (using tSNE?). The figure compares the resulting distributions of the VAE
methods with a zero, constant, linear and cyclical schedule. The figure shows that
the zero schedule, which corresponds to a standard autoencoder, produces a rather
irregular distribution of latent codes. The KL-divergence term in VAEs causes the al-
gorithm to fill the latent space.

As discussed before, although zero gives the best perplexity on the test set, sam-
ples from the zero model contain many grammatically incorrect sentences, as it some-
times samples z from regions in the latent space with low density. That explains why
samples from linear and cyclical VAES are better in terms of grammar, where latent
codes produced by these models fill the latent space.

Finally, in the appendix and in the GitHub repository'®, we give examples on how
VAE models can interpolate between two sentences. Following Bowman et al. [1],
we sample two random points in the latent space and then decode those into two
sentences. Then, starting from the first sentence, we gradually move through the la-
tent space on a line to the second sentence, and pick points on the way, which are
decoded into sentences. This process makes the ability of interpolation in the latent
space explicit.

In summary, we found that the cyclical VAE produces best result with regards
to grammatical correctness, followed by the VAE with linear schedule. Both also gen-
erate sentences with similar characteristics as in the training set (regarding sentence

el
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length), however concerning sentence length and diversity of the used vocabulary the
plain RNNLM and the seqGAN produce better results. But RNNLM and seqGAN gen-
erate a high number of grammatically wrong sentences in the experiments.

Figure 2: Latent representation of texts in the development
set. The KL-divergence term in the constant, linear, and cyclical
schedule forces the encoder to fill the latent space.

7. Conclusion

In this work, we present a new dataset for Russian language modeling (based
on the Lenta News dataset) and perform a comparative study between two modern
methods in text generation, namely VAE and seqGAN. Our results show the effect
of the scheduling method on the quality of the generated text in VAEs, where linear
and cyclical schedules produced the best models grammatically, however, the zero
method showed the best perplexity, but an irregular distribution of the latent codes.
LSTM and SeqGAN were able to replicate the mean and variance of the length of sen-
tences in the original dataset as well as the number of unique words. The contribu-
tions of this work are: i) the provision (on GitHub) of a reference dataset for Russian

10
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language modeling with 236K sentences in total, ii) the adaption of various VAE vari-
ants and seqGAN to Russian text, iii) and extensive experiments and evaluations with
the chosen deep learning methods which indicate that the cyclical VAE approach
performs best overall. Future work will include a deeper investigation of the latent
representations produced by VAEs (and why VAEs produce less diverse sentences),
apply state-of-the-art models like LeakGAN and studying the generation of Russian
language text conditioned on topic, sentiment, etc.

8. Acknowledgments

This work was supported by the Government of the Russian Federation (Grant
074-U01) through the ITMO Fellowship and Professorship Program.

Appendix 1

In the appendix, we show the interpolation using the four VAE models trained
on the reference dataset. As described in Section 6.2 we sample two random points
in the latent space and then decode those into two sentences. Starting from the first
sentence, we gradually move through the latent space on a line to the second sentence,
and pick points on the way, which are decoded into sentences. This processes makes
the ability of interpolation in the latent space explicit.

VAE/zero schedule
- IO’Kaphl ¢ HUMU BO3HUK KOHQIUKT MeXAY JByMsA I'PYNIIaMU U Ha I0oro—
BocTOKe <unk> . <eos>
- IO’Kaphl ¢ HUMU BO3HUK KOHQIUKT MeXAY JByMsA I'PyNIIaMU U Ha I0ro—
BocTOKe <unk> . <eos>
- TIO}KapEL C PEJIBCOB COIIEJI C OHOH U3 CAMBIX OIIACHBIX TEXHOJIOTUH ,
BBI3BaHHBIX <unk> Ha paboTy . <eos>
- IIOJKapHL ¢ CO3laHMeM 10 aTOMHOM dHepruu ( Marars ) , Ha <unk>
OCTpOBax . <eos>
- IIO}KapHL ¢ CO3/laHNeEM II0 CIIaCeHUIO PaKeT y BOPOT y Geperos oCcTpoBa ,
<unk> 3a pybex . <eos>
- COTIEpHUK 10 MHOT'MM IT0Ka3aTesIAM IIPOXOAUT ¥ IoMa OT IPOAaKu
6ueToB , <unk> 3a pybex . <eos>
- COTIEpHUK 10 MHOT'MM ITOKa3aTesAM ( HCH ) co3zaeT y Hee , <unk>
3a pybex . <eos>
- comepHUK ( TI0 coBaM mpeAcTaBuTessa pdce ) mpu 3ToM <unk> , coobiaer
Tacc . <eos>
- comepHUK ( TI0 CJIoBaM ) ¥ HEro BO3HUKJIM TPYAHOCTH , <unk> 3a coboii .
<eos>
- COTIEpHUK—TPaH—IIPU POCCHH TI0 JIETKOM aTeThkKe , <unk> 3a py6ex .
<eos>

11
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VAE/constant schedule
Explanation: This model decoded both points from the latent space into the
same sentence.

- B dddd rozy oH 6511 06'BABIIEH B MEXAYHAPOAHBIN PO3BICK . <€0S>
- B dddd rozy oH 6511 06'BSABIIEH B MEXAYHAPOAHBIN PO3BICK . <€0S>
- B dddd rozy oH 6B 06'BABIIEH B MEXAYHAPOAHBIN PO3BICK . <€0S>
- B dddd rozy oH 6511 06'BSABIIEH B MEXAYHAPOAHBIN PO3BICK . <€0S>
- B dddd rozy oH 6511 06'BSABIIEH B MEXAYHAPOAHBIN PO3BICK . <€0S>
- B dddd rozy oH 6bL1 06'BSABIIEH B MEXKYHAPOAHBIN PO3BICK . <€0S>
- B dddd rozy oH 6bL1 06'BABIEH B MEX/YHAPOAHBIN PO3BICK . <€0S>
- 8 dddd rozy ot 6511 06bSIBIEH B MEXKAYHAPOAHBIHN PO3BICK . <€0S>
- 8 dddd rozy ot 6511 06BSABIEH B MEXKAYHAPOAHBIHN PO3BICK . <€0S>
- 8 dddd rozy ot 6511 06bsIBIEH B MEXKAYHAPOAHBIHM PO3BICK . <€0S>

VAE/linear schedule
- TOYHas JaTa BbIxoZa GuIbMa [I0Ka HEM3BECTHA , IIOKa HesACHO , BRIMJET
Ha 5KpaHEHl . <eos>
- TOYHas aTa BhIxoZa GuIbMa [I0Ka HeM3BeCcTHaA , II0Ka HesACHO ,
He yTo4yHAeTcA . <eos>
- TaKoe 3adABJIeHUe cZeall Ha 3aceflaHNnU coBeTa desepaliuy XOKKes POCCUU
, lepeJjaeT pyua HOBOCTH . <€0S>
- COOTBETCTBYIOIIlee 3asABJIeHNUE c/iesiall Ha 3aceJaHuu coBeTa dpeJepalnu
XOKKest poccu o GyTbosy , lepejaeT prua HOBOCTH . <e0s>
- COOTBETCTBYIOIIlee 3asABJIeHUE ciesiall Ha 3aceJaHuu coBeTa dpesepalnu
10 IIpaBaM 4YeJIOBEKa , lepe/laeT Prua HOBOCTH . <€0S>
- COOTBETCTBYIOIIlee 3asABJIeHUE cZiesiall Ha 3aceJaHuu coBeTa dpeepalnu
10 IIpaBaM 4YeJIOBEKa , lepe/laeT pra HOBOCTH . <€0S>
- COOTBETCTBYIOIIlee 3aABIeHUe cZesal B ueTBepr , dd mas , Ha caiite
cleiCTBEHHOTO KoMuTeTa pd . <eos>
- COOTBETCTBYIOIIee 3asABIeH e cAeal B ueTBepr , dd mas , B Xxozie
COBelaHus . <eos>
- COOTBETCTBYIOIIlee 3asABIeHue B 4eTBepr , dd Mas , IPUBOAUT pra HOBOCTH .
<eos>
- COOTBETCTBYIOIlIlee TIOCTAHOBIEHUE OMyOIMKOBAaHO Ha caiiTe BeJOMCTBA
B uerBepr, dd mas, B <unk> . <eos>

VAE /cyclical schedule
- B TO JKe BPEMSA , TI0 CJIOBaM <unk> , OH MOCETUT POCCHIO , & TAKIKE
B [IOCJIE/[HUE TO/BI . <€0S>
- B TO JKe BPeMSA , TI0 CJIOBaM <unk> , OH MOCETUT POCCHIO , a TAKIKE
B [IOCJIEJHUE TO/BI . <€0S>
- B TO XK€ BpeMs , 10 cjioBaM <unk> , OH ObLT BEIHYK/IE€H YIUTH B OTCTABKY .
<eos>
- B <unk> , I'/le OH XKXWUJI B HbIO—fIOpKe , HE YTOUHACTCA . <eos>
-B <unk> , I'/le OH XKXWUJI B HbIO—fIOpKe , HE YTOUHACTCA . <eos>
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- B pesysbTaTe <unk> moru6su dd 4esoBek , 60NBUIMHCTBO U3 KOTOPBIX
OB YOUTEL . <eos>

- TI0 ero cjoBaM , <unk> ObLJI 3aZiep>KaH B X0/le IIPOBEPKU , IPOBeIeHHOMU
HouIuen . <eos>

- TI0 ero cjioBaM , <unk> OblLJI 3aiep>KaH B X0/l IIepeCTPENIKHU C TOMULIHeH .
<eos>

- TI0 TIpeIBAPUTENbHBIM JAaHHBIM , <unk> ObLT paHEeH , a TaKXKe paHeH .
<eos>

- IPUYKHBI KaTacTpOodHl yCTaHABIUBAIOTCA , <unk> B pesynbTaTte
WHIUJIeHTa HUKTO He ocTpajal . <eos>

Appendix 2

Here we present a few examples of grammatically correct and incorrect sen-

tences generated by the VAE/Cyclical model.

Grammatically correct

- ecyiv BUHa OyZieT flokazaHa , <unk> rposut o dd jieT 1uineHus cBOOOAHI .
<eos>

- HO 3TO He IepBBIH ciIy4ail , Korga oH 6yzeT <unk> B ipaMoM adwupe .
<eos>

- B TIOCJIeTHUE TO/bI OH JKUJI B HhIO—MOpPKe U BAaIIMHTTOHE . <€0S>

- CTOMMOCTb KOHTpaKTa olleHuBaeTcsa B dd MUIMOHOB ZI0JIIapoB . <eos>

Grammatically incorrect

- ecsii OBl He yzacTes , To <unk> , kak , 6yzer <unk> , To, Kak oH , He OyzeT
JenaTh KaKre—To MpobyieMbl , Kacatonuecs <unk> namMeHeHU B 3aKOH "

o <unk>". <eos>

- IOEZINHOK COCTOSJICS B HOYBb Ha D dpeBpasis , 0HaKO U3BECTHO , YTO <unk>
B HEM MIPUHSI yaacTre okoso dd ThICSY YesoBeK . <eos>
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