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Abstract

In this paper, we describe a way to perform span normalization as a sequence labelling task. Our model predicts
the modifications that should be applied to the span tokens to normalize them. This prediction is performed via se­
quence labelling, which means that each token is normalized independently. Despite the simplicity of the approach,
we show that it can lead to the state­of­the­art results. We compare different pretraining schemas in application to
this task. We show that the best quality can be achieved when the normalizer is trained on top of a BERT­based
morpho­syntactic parser’s representations. Moreover, we propose some additional features useful in the task and
prove that auxiliary morpho­syntactic losses can help the model. Furthermore, we show that the model compares
favourably with other contestant models of the RuNormAS competition.
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Аннотация

В этой статье мы описываем способ осуществления нормализации аннотированного спана как задачу
разметки последовательности. Наша модель предсказывает модификацию, которую нужно произвести над
токенами спана, чтобы получить его нормализованный вариант. Это предсказание осуществляется для каж­
дого токена независимо. Данный подход является простым, однако способен давать высокое качество. Мы
сравниваем различные схемы предобучения в контексте данной задачи и показываем, что наилучшие ре­
зультаты могут быть достигнуты с применением модели предобученного морфо­синтаксического парсера
на основе BERT. Мы предлагаем признаки, которые полезны в данной задаче, в дополнение к представле­
ниям, получаемым из BERT. Итоговая модель показала одни из самых высоких результатов в рамках сорев­
нования RuNormAS.

Ключевые слова: Нормализация аннотированного спана, лемматизация, предобученные языковые мо­
дели, многозадачное обучение.

1 Introduction

Annotated span normalization is the task of converting an annotated span of text to its normalized form.
Such normalization is highly context­dependent. For instance, span ”Александра Пушкина” will be
normalized differently in the following contexts: ”Александра Пушкина видели…”1 (to ”Александр
Пушкин”) and ”Александра Пушкина видела…”2 (to ”Александра Пушкина”).

1”Alexander Pushkin was seen...”
2”Alexandra Pushkina has seen...”
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In a way, it is similar to lemmatization because you are required to perform disambiguation of a word
to obtain its normal form. But in contrast to it, span normalization has to be syntactically correct: the
syntactic dependencies between the span’s words should be retained after the normalization.
The most common approach to perform it is based on a morpho­syntactic parser (e.g., it is achieved

this way in Natasha library3). Each word of a span is converted to the correct form based on the syntactic
relationships between the word and other words in the sentence. It is a suitable way to perform a span
normalization without any specific train data available. However, it may be hard to obtain a normalization
that would follow some external guidelines because you have to learn them first and implement them using
some (maybe quite extensive) set of rules.
An alternative approach may be designed using language models or seq2seq framework as in [5]. In

this case, a model is trained to predict the normalized sequence given the source sequence. It is quite
straightforward to formulate the task this way and language models are known to lead to the state­of­the­
art results in tasks such as machine translation. Another reason to utilize this approach is the fact that the
model learns the normalization guidelines itself without additional supervision from your part.
In our approach, we consider something in between those two ways mentioned above. We perform

the normalization as a sequence labelling task predicting a modification for each word in a span. The
model is based on the word representations obtained from a morpho­syntactic parser. To this extent, our
approach is similar to the first one. Nevertheless, we use only word embedding from the parser, not
its final predictions. We assumed that such representations should contain all useful information that
does not have to be converted to the parses. Our approach should also be faster than the one based on a
language model because it predicts the normalization in a non­autoregressive manner.

2 Model

The model we used in our approach closely follows the model from [1] which has shown the state­of­
the­art performance in morpho­syntactic parsing on the GramEval­2020 dataset [6].
The model consists of three main parts: a BERT­based embedder [2], an LSTM­based encoder and a

simple classifier that predicts the modification which should be applied to the given word to obtain its
normalized form. As a result, the model predicts the modifications for each word in each span in the
sentence independently, which means that we can normalize all sentence spans in a single forward pass.
Conversely, it may also lead to some inconsistencies between the normalized words.
Such a model would have been a simplified version of the model from [1], however, we added a few

improvements to address the differences between the lemmatization and annotated span normalization
tasks.
Figure 1 gives an overview of our model.

2.1 Span Features

The main difference between those tasks is the fact that the normalized form of a word depends not only
on the disambiguated word itself but also on all the other words in the span. Let’s consider the following
sentence: ”Правительство Российской Федерации рассмотрит…”4. The normalized form of the word
”Российской”5 depends on the span: it should be left unchanged when the first three words form the span,
it is equal to ”Российская” in the normalization of ”Российской Федерации”6 and it is normalized to
”Российский” in a single word span.
To address such a difference, we used special features to mark those words that have to be normalized.

The idea is based on BIO­notation in NER. We marked with the B­feature the first word of each span,
while all the rest words of the span were marked with the I­feature and other words (not corresponding
to any span) were marked with the O­feature. We trained three embeddings corresponding to those BIO
features and concatenated them to the word embedding obtained from BERT.

3https://natasha.github.io/
4”The Government of the Russian Federation will consider…”
5”Russian”
6”The Russian Federation”
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Figure 1: Schematic representation of our model

2.2 Prediction Factorization

We predicted the word normalization with a two­head classifier. One head was aimed to predict a set of
modifications which should be applied to a word to obtain its normalized form, e.g.:

{”cut_prefix”: 0, cut_suffix”: 1, ”append_suffix”: ”ый”}

Another head predicted the word capitalization: lower­ or uppercased, or capitalized. Such a process
differs from the one in [1] in the way that the sets of spelling and capitalization modifications are now
independent. We call it prediction factorization. Such factorization leads to a richer set of modifications
because each spelling modification can be used together with each capitalization modification. It also
should be easier to be learned by the model because of a significantly lower number of classes (approx­
imately by the factor of three).

2.3 Lemma Features

We also conditioned the prediction on the set of spelling modifications allowed by a dictionary. We
collected all the possible forms of each word and built a bag­of­spelling­modifications binary vector
where 1s corresponded to indices of those modifications that can be obtained from the dictionary and 0s
corresponded to all other modifications. This way, the model learned to prefer the allowed forms when
it is possible but wasn’t constrained by them.

2.4 Auxiliary Morpho­Syntactic Loss

As we mentioned before, the span normalization can be performed based on a set of rules on top of
morpho­syntactic parsing. We assumed that the model could benefit from an additional loss which will
help it to learn morpho­syntactic relations better. For that purpose, we used a pretrained morpho­syntactic
parser to predict the grammar values and syntactic relations in the train data. We trained our normalizer
model to predict those (possibly dirty) values. We show that such auxiliary loss leads to some improve­
ment of the normalization quality.
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2.5 Pretrained Models
Pretrained models’ usage is known to lead to great improvement in the model quality (e.g., [2]). We
considered the RuBERT model and RuBERT fine­tuned for morpho­syntactic parsing in our work. The
latter model should be more aware of morpho­syntactic relationships, so we hypothesized that it may suit
our task better.
We also considered twomodes of training. In the first variant, we trained only the LSTM­based encoder

and classifier, while in the second one, we also fine­tuned the RuBERT’s parameters.
However, it should be noted that the first approach on top of a morpho­syntactic parser is the best one

in terms of its applicability: such a model may be used for normalization as well as parsing with the
slowest part of computations (BERT representations obtaining) performed only once.

2.6 Ensembling
We also considered an ensemble of few models trained with a similar set of parameters. To select the pre­
diction from such an ensemble, we used a majority vote with additional filtering. Such filtering worked
in the following way: whenever a known word existed among the predicted normalization, we removed
all unknown options from the voting. After the filtering, we selected the most popular predicted normal­
ization.

3 Data

We trained our model on the data from the RuNormAS competition. We used random 90% of the data
for training and the rest for validation purposes.
The data consisted of two subsets: generic spans and named entities. In the former subset, the model

was required to normalize an arbitrary span, while in the latter, it should have to normalize only named
entities. Consequently, generic spans generally were longer (in the number of tokens) and the named
spans contained much more infrequent words (which would have been hard to find in a general­purpose
dictionary).

Generic Named
Span count 54360 39575
Token count 136357 70997
Avg span length 2.5 1.8
Unknown token count 1376 5776
Unknown token rate 1% 8%

Table 1: Dataset statistics

Table 1 provides the train dataset details. We called unknown those tokens that were not available in
the pymorphy2 dictionary (from [4]).
The main issue was to convert the data to the sequence­labelling­friendly format. To achieve it, we

aligned the original texts with the corresponding normalized sequences and removed those which could
not be aligned correctly.
The chief source of misalignments was a different number of tokens in the source and target sequences.

Usually, it was a result of an additional spelling correction performed during the normalization of the
training data. E.g., in some cases, the original text contained two words ”анти террористической”7 that
should have been normalized to a single word ”антитеррористический”. Unfortunately, our model was
not designed to fix such misspellings, so we did not have any option but to filter such sequences out of
the training dataset. It led to the loss of about 2% of the training data.
We trained every model on all available data and did not try any specialized model for the generic or

named subsets. However, we noted a slightly different format of normalization between the generic and
named subtasks. E.g., a simple postprocessing rule that selects an infinitive form instead of a participle or

7”antiterrorist”
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gerund improved the quality on the generic subtask but decreased it on the named one. To give the model
an ability to learn such rules itself, we tried to concatenate a dataset embedding to each word embedding.

4 Experiments

4.1 Experimental Setup
As it was mentioned before, we highly reused the model from [1] in our setup. The whole experimental
setup was also based on the provided code8. We utilized allennlp [3] and transformers [7] libraries for
our implementation. The parameters of the BERT­based embedder and LSTM­encoder were the same.
We used 8­dimensional span and dataset embedding features. We used the trainable_bert checkpoint to
initialize the morpho­syntactic parser.
The code used for those experiments was published in a separate branch9.

4.2 Embedders’ Comparison
Table 2 summarizes the results achieved by different combinations of embedders, their finetuning modes
and the applied auxiliary losses. Syntax­BERT models are the models initialized from a morpho­syntactic
parser’s checkpoint. Multitask models are the models trained with the auxiliary losses, while single
corresponds to the models trained only to normalize words. Frozen or trainable relates to the BERT
parameters’ finetuning.
We also implemented a baseline based on the syntax parser predictions (Syntax Baseline). We nor­

malized span tokens using the Natasha library implementation mentioned above, but we utilized syntax
predictions from the same morpho­syntactic parser as in the Syntax­BERT models. Natasha predicts
lowercased normalization so we used the source capitalization for the normalized tokens to achieve bet­
ter quality. There still is some room for improvement with a capitalization predictor: we could have
achieved 91.27% quality on the Named subset, if capitalization had not been considered.

Syntax
Baseline

RuBERT Syntax­BERT
Frozen Trainable Frozen Trainable
Single Multitask Single Multitask Single Multitask Single Multitask

Generic 94,52% 96,81% 96,98% 96,87% 97,43% 97,30% 97,74% 97,10% 97,72%
Named 90,23% 96,20% 96,05% 97,47% 97,64% 97,74% 97,58% 97,41% 97,77%

Table 2: Embedders’ comparison

Our baseline model shows the worst results which proves that good normalization is hard to obtain
without additional handwritten rules or special model training.
Clearly, the model benefits from morpho­syntactic pretraining. It is especially noticeable in the case

of frozen models comparison. As we mentioned before, we considered the frozen Syntax­BERT model
to be the most useful in downstream applications because it can perform lots of tasks at the same time.
However, the results show that such a model is also good from the normalization quality point of view.
Surprisingly, in the single­task training mode, the frozen Syntax­BERT is better than the trainable

model. We can assume that the model slightly overfits when all parameters are trained. However, this
is not the case in the multitask training. The additional losses prevent the model from forgetting useful
morpho­syntactic relations learned by the parser.
RuBERT­based models work significantly better in the trainable setup. It may be explained by the fact

that BERT’s representations should be adjusted for the task (BERT­based morpho­syntactic parser also
performed poorer without proper finetuning). However, a multitask trainable model is almost on par with
the Syntax­BERTmodels. It suggests that the model also managed to learn some useful morpho­syntactic
information from the automatic markup.
To assess this hypothesis, we compared the qualities of the multitask models on the GramEval­2020

dataset. The results are presented in Table 3.
8https://github.com/DanAnastasyev/GramEval2020
9https://github.com/DanAnastasyev/GramEval2020/tree/span_normalization
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Model POS Feats LAS
Frozen Syntax­BERT 96,20% 96,40% 84,60%
Trainable Syntax­BERT 95,55% 96,09% 83,70%
Trainable RuBERT 94,76% 95,81% 81,56%

Table 3: Comparison of multitask models on the GramEval­2020 test data

It is expected that the frozen model initialized from the parser trained on the GramEval dataset should
achieve the highest scores. However, the results of other models are also promising. As anticipated, the
trainable variant of the same model doesn’t forget much because of the auxiliary losses. Moreover, the
trainable RuBERT­based model learns morpho­syntactic parsing reasonably well without been exposed
to a significantly larger and cleaner original dataset.

4.3 Model Features’ Ablation

Table 4 shows how different features of the proposed model affected the quality. The Final model is based
on Syntax­BERT fine­tuned in the multitask mode. Each subsequent row shows how the model would
have performed without one feature.

Generic Named
Final model 97,72% 97,77%
­ span embedding 84,70% 95,68%
­ lemmatization factorization 97,48% 97,54%
­ dataset embedding 97,28% 97,46%
­ possible lemma embedding 97,10% 97,48%

Table 4: Model features’ ablation

Just as expected, the span embeddings have a key role in our model. The model is unable to understand
the span boundaries and performs simple lemmatization without them. It especially affects the model’s
quality on the generic subset where the spans tend to be longer.
Lack of any other feature also reduces the model quality, although much less substantially.

4.4 Comparison on RuNormAS

Finally, we can compare the model quality with other contestants of the RuNormAS competition. Our
team was called qbic and we ended up in second place in the generic track and first place in the named
entity normalization track. The full results are presented in Table 5.

Team Generic Named
ksmith 98,01% 98,12%
qbic 97,91% 98,15%
eindenbom 97,58% 97,92%
king_menin 96,45% 95,75%
baseline 77,32% 88,81%
fateev.da 77,30% 88,97%
shkunkov.a 0,00% 76,80%

Table 5: Comparison with other contestants

We used ensembling of five models to achieve better quality. The ensemble outperformed a single
model by 0,2% on the generic subset and by 0,4% on the named subset.

Anastasyev D. G.
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5 Error Analysis

We performed some error analysis of the final ensemble. We identified the following types of errors:
• Space error is an error that could have been fixed by correct spacing, e.g., ”В.Филев” was predicted
instead of the expected ”В. Филев”. Our algorithm used the original spaces for the normalization,
so it was not able to correct such cases. This type of error was ignored in the generic track.

• Punctuation error occurred because of the mismatch of the source and normalized texts punctuation,
e.g., ”дети ­ сироты” (with a hyphen) instead of ”дети – сироты” (with en­dash).

• Capitalization error is a result of incorrectly predicted capitalization. It is common in some multi­
word expressions with ambiguity, e.g., in the normalization ”институт исследований Южной
Азии” predicted instead of ”Институт исследований Южной Азии” the word ”институт” may
be capitalized or not depending on the context. This type of error was also ignored in the generic
track.

• Alignment error may be a result of the incorrect word count (e.g., ”будет увеличиваться” instead
of ”увеличиваться”) or incorrect word ordering (e.g., ”Юрий Мирошник” instead of ”Мирошник
Юрий”). Such errors clearly could not be fixed by our model.

• Word form errors. We split them into four categories depending on whether the expected normal­
ization could have been found in the pymorphy2 dictionary (Known­/Unknown­) and whether the
predicted normalization could have been found in the dictionary (­Known/­Unknown). Most of the
errors are in the Known­Known category, which means that the model was not able to select a correct
word form of a common word.

We believe that space, punctuation and alignment errors are minor and may be ignored.
The qualitative analysis can be found in Table 6.

Generic Named
Error Single model Ensemble Single model Ensemble
Space ­ ­ 11 (4.30%) 11 (5.19%)
Punctuation 15 (7.77%) 17 (9.60%) 25 (9.77%) 22 (10.38%)
Alignment 32 (16.58%) 30 (16.95%) 20 (7.81%) 14 (6.60%)
Capitalization ­ ­ 39 (15.23%) 38 (17.92%)
Known­Known 136 (70.47%) 121 (68.36%) 121 (47.27%) 95 (44.81%)
Known­Unknown 4 (2.07%) 3 (1.69%) 7 (2.73%) 9 (4.25%)
Unknown­Known 3 (1.55%) 3 (1.69%) 5 (1.95%) 6 (2.83%)
Unknown­Unknown 3 (1.55%) 3 (1.69%) 39 (15.23%) 28 (13.21%)

Table 6: Error analysis of multitask trainable Syntax­BERT model and its ensemble

It is clear that ensembling helps to select a better word form and reduces errors count this way. It shows
the instability in the training process because a significant number of errors was fixed by the majority
vote over the predictions of similar models.

6 Conclusion

We proposed an alternative way to perform span normalization and showed that it works reasonably
well on the RuNormAS dataset achieving the best or almost the best results there. We believe that our
method should be considered favourably when enough training data is available for normalizer because
it is simpler than language model training or normalization rules designing in such a scenario. The in­
ference speed is bound by the speed of the syntax parser’s encoder, which should be practicable in most
applications.
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