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Abstract

Nowadays, BERT models have found wide use in the NLP field. However, standard BERT architecture training
can be stifled by the lack of labels for different tasks while treating multitask settings as a one-task multilabel
setting. For every example, we have labels from this example’s source task but not from other tasks. This article
addressed this issue, exploring eight different data pseudo-labeling approaches in the GLUE 4-task setting. These
approaches do not require changes in samples or model architecture. One of the presented techniques excels results
on RTE from the original article, by 6.2 %, and falls behind the original article on QQP, MNLI, and SST only by
0.5-1.2 %. This way also excels other pseudo-labeling approaches explored in the article by 0.5-2% on average if
we consider similar tasks. However, for tasks that are dissimilar to each other, different proposed approach yields
the best results.
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Amnnoranus

B nacrosiiee Bpemst B 06pabOTKe ECTECTBEHHOTO SI3BIKA IIIUPOKO UCIOJIB3YIoTCsT Mojeau tuiia BERT.
Opnrako obyuenne cranmapTaoit apxuteKTypbl BERT nmpu MmHOr0o3amaasnom moaxo e 661BaeT 3aTPyIHEHO
HEJIOCTATKOM METOK JIJIsl Pa3HBIX 33Ja4. B craTbe MCCIIeyIOTCs BOCEMb PA3JIMYHBIX CIIOCOOOB IICEBIIO-
pa3MeTKM JaHHBIX pu o0yvueHnn Ha HeCcKOabKuX 3amadax tumna GLUE, ne Tpebyromux n3Mmenennit Hu
B Habope NPUMEPOB, HU B apxXUTeKType. B wacTHOCTH, NpeJCcTaBiIeH TaKoil Crocob IICeBIOPa3MEeTKU
JAHHBIX JJIsI OOyYeHMsI OPUTHHAJILHON MOjenn 1jis pemtenus derwipex 3amad tuna GLUE, koropsrit
IIPEBOCXOJIUT PE3YJIbTAThl U3 OPUTHMHAJIbHON cTaThu Ha naracere RTE ma 6.2 % u orcraer or Hee Ha
QQP, MNLI u SST Tonbko Ha 0.5-1.2 %. Cnocob mpeBoCXoauT ApyTrue METOBI TICEBI0PA3METKH, PAC-
CMOTpPEHHBIE B CTaThe, B cpeareM Ha 0.5-2% Ha MoXoKux 3ajadax, HO Ha PA3HOPOHBIX 3a/1a9aX JIydIne
paboTaeT APYToit U3 MPEIJIOKEHHBIX CIIOCOOOB.

Kumrouessie ciioBa: BERT, MHOrO3a1a4Hast MOZIEIIb, IOTIOJIHEHNE JAHHBIX, [ICEBI0OPA3METKA

1 Introduction

Transformer-based models, such as BERT, have found their wide use in the task of text classification.
Conditions of learning such models are described in the original article [3]. These conditions suppose
fitting every model for its task. In such a way, if we need to solve several classification tasks in parallel,
we should keep several models for prediction, which increases the demand for computation power. This
problem leads us to the idea of training one model that can yield the result for several tasks simultan-
eously. We explore the ways of training such a model without architecture changes.
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2 Literature review

Article [8] shows the approach to auto-selecting tasks while training linear models. However, the au-
thors evaluated the way proposed in the article only for the custom binary classification dataset. This
way also cannot be directly compared to the more novel results due to the evaluated model’s simplicity.
Articles [9], [6] and [10] show the ways of fitting BERT on several tasks at once. However, the ways
described there still require utilizing more complex architectures compared to single-task learning. The
most basic way of fitting a single-task BERT, described in this article, is the following. We tune the
multitask BERT without changing the base model architecture and data the model used for fine-tuning.
We only change the available labels and possibly freeze some weights. In [1] while processing images,
authors used predictions of models fit on 1 percent of training data for pseudo-labeling (assigning labels
for unlabeled samples). In [2] authors used such a pseudo-labeling method (while having models fit for
different languages) as data translation from one language to another and backward, and in [7] authors
explored the impact of pseudo-labeling approaches for the computer vision tasks as well as for the ma-
chine translation. However, we did not find research comparing different pseudo-labeling ways for fitting
BERT on the GLUE benchmark[5], so this article fills in this gap. The simplest way of fitting multitask
BERT, described in this article, is fitting the multitask model without changing its architecture and data
given as an input, but only with editing an array of labels for the multiclass task.

3 [Experiments setting

In this article, we have researched different methods of training the BERT model for solving various
classification tasks simultaneously. The unique feature of every considered approach is that, unlike
multitask learning methods such as [10] and [9], we do not change model architecture. But the only
thing we change is the array of labels sent as input. In every approach, we trained the model that solves
the multilabel classification problem. Specifically, this model predicts probability from O to 1 for every
class. In this work, we research the quality of pseudo-labeling for such tasks. We have evaluated the
model on the following classification tasks: MNLI, Quora Question Pairs (further - QQP), SST-2, and
RTE for the GLUE set of tasks[4]. We have chosen MNLI, QQP, and SST-2 as their datasets were large
enough (>= 50000 samples for every task). We also have chosen RTE as we need to get entailment in
the same way as in MNLI. We have reproduced original article results for each of these tasks. Note that
the BERT model in the original article was not multilabel. The examples from all tasks were shuffled
and sampled randomly. We should note that we used the BERT-Base model as a benchmark due to the
computational restrictions.

4 Notations

We use the following labels in the formulas described in the article:

* 4, —: labels positive and negative for SST dataset;

* d, d: labels duplicate and not duplicate from Quora question pairs dataset;

* e, c,n: labels entailment, contradiction and neutral from MNLI dataset;

* ¢, le: labels entailment and not entailment from RTE dataset;

* MNLIpred, RTEpred, QQPpred, SSTpred - predictions of the model trained on the following task
(MNLI, RTE, QQP, SST) for the label from the lower formula index;

[ denotes rounding of probability vector predicted by the original model: we round the largest
element of the probability vector to 1 and all other elements to 0;

o MNLIpred' is the prediction of the plain MNLI model with entailment set to zero. So, we set the
predicted probability of entailment to zero and then treat the 3-class classification as 2-class while
predicting the plain single-label MNLI model (for classes entailment, contradiction, and neutral);

* probla%! is the vector with probabilities from 0 to 1 that we need to assign to the example from
task, which was labeled as label;

* Pluper is the probability P of label label, where P is from O to 1.

It means that, for example:
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* MNLIpred, - is the probability of entailment label, predicted by the model trained on MNLI;
* I(MNLIpred). means that it is 1 if entailment is most likely predicted class in the MNLI task, and
0 otherwise.

MNLIpred'¢ = MNLIpred™ /(MNLIpred™ + MNLIpred®) (1)
MNLIpred'¢ = MNLIpred®/(MNLIpred™ + MNLIpred©) )

We denote the components of probability vectors using brackets.

5 Multitask approaches explored

We considered different approaches for fitting multitask models. We present these methods below.

5.1 Independent labels

In this approach, we fit the model on the united array of RTE, MNLI, QQP, and SST-2. For every
example, we consider label arrays for each of the tasks to be independent. In other words, we set for
every sample the probability of absolutely all classes, except for already known, as 0. We also set the
likelihood of an already known class as 1 (or 100 percent) for every sample. There are nine classes: 3
classes for the MNLI task and two classes for each other tasks. It means that default probability vector
for this setting is:

prObdefault = [057 0!57 067 007 Onv 0d7 O[d, 0-!—7 O—] 3)

So for every label, we change in this default vector only the probability of the "correct" label to 100
percent, for example:
pTOb%TE = [167O!EaOeaOC,OnaodaO!daO+7O*] (4)

Other equations can be written in an analogous way.

5.2 Soft independent labels

This approach is analogous to the Independent labels. However, it has the following difference: we do
not take down to zero probabilities of absolutely all classes we do not know for every sample. Instead,
we take down to zero only the probability of all classes except for the known label for the "own" task.
The probabilities of all other classes are labeled to be the same. To label them, we used the following
rule: the sum of probabilities of all other classes must be equal to 1, and the probabilities of all other
classes ( for each task) must be equal to each other. We can quickly obtain probability coefficients for
every class from the "other" task if we know these conditions. It means that default probability vector
for this setting is:

prObdefault = [1/257 1/2!ea 1/367 1/307 1/3717 1/2d7 1/2!d7 1/2+7 1/2—] &)

So for every label, we change in this default vector only the probability of the "correct" label to 100
percent and the probability of the "incorrect" labels from this task to O percent, for example:

prOb(]i\JNLI = [1/2&‘7 1/2!67 167 OC7 Onv 1/2d7 1/2!d7 1/2+7 1/2—] (6)

We can write other equations analogously.
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5.3 Augmented independent labels

This approach is similar to the Independent labels and Soft independent labels. However, it has the
following difference. For every sample, we do not consider the probability of every class from a "differ-
ent" task to be the same, but instead, we define it by the prediction of the base model. The base model
was trained preliminarily on this "different" task to reproduce the original article results.

It means that default probability vector for this setting is:

probefaur = [RTEpred,, RTEpred,., MNLIpred,,, MNLIpred,., MNLIpred,,, QQPpred,,
QQPpred,y, SSTpred ., SSTpred _] @)

So for every label, we change in this default vector only the probability of the "correct" label to 100
percent and the probability of the "incorrect” labels from this task to O percent, for example:

probdQQP = [RTEpred,, RTEpred,., MNLIpred,, MNLIpred,., MNLIpred,,,
14,01, SSTpred ., SSTpred_] )

We can write other equations analogously.

5.4 Soft probability assumption

In this setting, as well in the settings Independent labels, Soft independent labels and Augmented
independent labels, we trained the model on the united array of RTE, MNLI, QQP, and SST-2. However,
we considered labels for these tasks to be dependent. Specifically, we downsized the number of classes
for the model to 5: positive, negative, entailment, contradiction, neutral. We have transferred classes
of that datasets to the probabilities of these five classes by the following rules. We consider labels from
RTE, MNLI, and QQP to be 50 percent positive and 50 percent negative, and in that time:

* We use MNLI labels "as it is" for classes entailment, contradiction and neutral: one of the classes
entailment/neutrall/contradiction has probability 100 percent and other two have probability O per-
cent.

* We consider QQP label duplicate to be entailment with probability 100 percent and neut-
rallcontradiction with 0 percent probability. The label not duplicate is considered to be neut-
rallcontradiction with probabilities 0.5 and 0.5 (as they need to be equal to each other and their
sum must be equal to 1), and its probability to be entailment is set to 0.

* We consider RTE label entailment to be entailment with probability 100 percent and neut-
ral/contradiction with zero probability. The label not entailment is considered to be neut-
rallcontradiction with probabilities 0.5 and 0.5(as they need to be equal to each other and their
sum must be equal to 1), and its probability to be entailment is set to 0.

We consider all labels on SST-2 as belonging to classes entailment/neutral/contradiction with the
same probability equal to 1/3. At the same time, we assign labels positive/negative according to the
initial SST-2 dataset.

It means that default probability vector for this setting is:

probaefaut = [1/3,,1/3,,1/3,,1/2,,1/2_] )

And for examples from SST task and MNLI task, we just set in the default vector the probabilities of
"correct" labels to 1 and of "incorrect” labels to 0, respectively, for example:

prob3ST =[1/3.,1/3,,1/3,,14,0_] (10)

prOb(]:WNLI: [OE,IC,On,1/2+,1/2_] (11)
For RTE task and QQP task, we handle entailment in an analogous way to the:

probirp = probhop = probynrr = [le,Oc, 05, 1/2,,1/2_] (12)
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However, we handle "not entailment" from RTE and "not duplicate" from QQP differently:

pTOblﬁTE - pTOngP = [067 1/207 1/2n7 1/2+7 1/27] (13)

5.5 Soft predicted labels

This approach is analogous to the Soft probability assumption with the following difference. We obtain
the missing labels (contradiction/neutral and positive/negative on tasks RTE and QQP, positive/negative
on the MNLI task, entailment/contradiction/neutral on the SST-2 task) by the additional labeling made
by the model for each task, specifically:
* If an example is not from the SST-2, we get positive/negative labels from the SST-2 model. Other-
wise, we get them from the original dataset;
* If an example is from MNLI, we get labels entailment, contradiction, or neutral from the original
dataset;
 If an example is from RTE with the label entailment or from QQP with the label duplicate, we
assign the label entailment with probability 1 in an analogous way to the previous point;
¢ If an example is from RTE with the label not entailment or from QQP with the label not duplicate,
we assign the probability of label entailment as 0. In that way, we also take probabilities of label
contradiction or neutral from predictions of the model trained on MNLI, and we normalize that
probabilities for the sum of probability of contradiction and the probability of neutral.
It means that default probability vector for this setting is:

probaefaur = [MNLIpred,,, MNLIpred., MNLIpred,,, SSTpred . , SSTpred_] (14)

For the SST task and MNLI task, we just set in this vector the probabilities of "correct" labels to 1 and
of "incorrect" labels to 0, respectively, in the same way as in previous approach, for example:

probiynrr = [Oc,Oc, 1, SSTpred ., SSTpred _] (15)

And the formulas for probabilities of RTE and QQP tasks look as the following:

probarp = probS i = probéQP = [1¢,0¢, 0y, SSTpred ., SSTpred _] (16)

prob!j%TE = prongP = [0, MNLIpTed!Ce, MNLIpredf, SSTpred ., SSTpred_] 17)

5.6 Hard predicted labels

This approach is analogous to the Soft predicted labels approach with the following changes. From
labels received from the original model prediction (MNLIpred, SSTpred, QQPpred, RTEpred), the
maximal probability for each task is rounded to 1, all other probabilities are rounded to O.

It means that default probability vector for this setting is:

probaefaur = [{(MNLIpred,), IMNLIpred,), I(MNLIpred,,),I(SSTpred ), I(SSTpred_)] (18)

And for the SST task and MNLI task, we make in this vector the same changes as in previous ap-
proaches. Changes for QQP task and RTE task look in the following way:

probarg = probéQP = [1¢,0¢, 0y, I(SSTpred,. ), I(SSTpred )] (19)

probsr g = prongp = [0,, MNLIpred'*, MNLIpred',
I(S8STpred, ), 1(SSTpred_)] (20)
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H Setting name Average by 4 tasks RTE QQP MNLI SST H
Plain(reproduced) 81.3 64.6 90.8 773 927
Independent labels 82.8 783 906 758 920

Soft independent labels 82.2 69.7 89.5 759 92.6
Augmented independent labels 81.4 68.1 90.5 756 924
Soft probability assumption 84.2 782 90.7 762 919
Soft predicted labels 83.2 763 90.5 760 922

Hard predicted labels 82.9 774 90.6 753 90.7
Independent labels frozen head 82.5 76.1 905 757 914
Soft independent labels frozen head 82.6 744 904 7677 912

Table 1: Best accuracy on validation data (best learning rate for every setting, average by 3 runs)

5.7 Independent labels frozen head

This approach is the same as Independent labels, with the following exception: the head of the model
(linear layer for classification) does not learn; only the body does. Formulas for this approach are the
same as for Independent labels.

5.8 Soft independent labels frozen head

This approach is the same as Soft independent labels, with the following exception: the head of the
model (linear layer for classification) does not learn; only the body does.
Formulas for this approach are the same as for Soft Independent labels.

6 Results

We have made four reproduction attempts for every approach described above, including reproducing
the original article results. In a similar way to the original article, these attempts had learning rates 2e-5,
3e-5, 4e-5, and 5e-5 accordingly. As the final learning rate, we chose the learning rate for which we had
the maximal accuracy on the validation set. We have defined accuracy on the validation set as the average
accuracy for all four tasks. We restricted the learning to 3 epochs for all tasks. Complete obtained data
or the validation set are attached below in the Appendix A. Results on the validation set and the test set
are described below in Table 1 and Table 2. We should note that we achieved all these results with 10-13
% fewer parameters and without any changes to basic architecture despite the yielding lower results than
[10].

7 Discussion

As we can see, considered methods yield results similar to the original BERT model results, or even
better if we descry the RTE task. The reason for this exceeding for the RTE task is its similarity with
other tasks from the GLUE benchmark, for which we have much more data than for RTE.

From all considered methods, Soft probability assumption method yields the best results on the
most similar tasks: RTE and MNLI. This result shows that uniting labels while solving similar tasks is
justified.

However, on different tasks, such as SST and QQP, Augmented independent labels method yield
the best result, which is explained by the effect of knowledge transfer while solving different tasks.
Nonetheless, this effect was weakly expressed or even absent while we united labels, and its reason
remains unclear. Also, the absence of the accuracy growth on QQP while uniting labels can tell that
unification in this task was too rough. It shows the constraints for the proposed method with label
unification.
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H Setting name Average by 4 tasks RTE QQP MNLI(m/mm) SST
Plain(from original article) 78.8 66.4 71.2 84.6/83.4 93.5
Plain(reproduced) 77.6 62.7 71.0 83.1/82.7 93.5
Independent labels 79.0 71.5 709 82.7/81.7 91.3

Soft independent labels 78.9 69.3 713 82.8/ 82.1 92.6
Augmented independent labels 77.6 642 71.8 81.2/80.7 93.2
Soft probability assumption 79.7 72.7  70.7 83.4/82.3 92.5
Soft predicted labels 78.8 70.3  70.7 81.7/81.7 92.5

Hard predicted labels 79.1 713 711 81.7/81.4 92.6
Independent labels frozen head 78.2 669 71.8 82.6/81.8 91.9
Soft independent labels frozen head 79.1 70.0 715 83.0/ 82.3 92.4

Table 2: Best accuracy on test data (best F1 on the QQP task)

Notably, the similarity of tasks poses some constraints on applying the Soft probability assumption.
If they were entirely dissimilar, we could not unite the labels in this task. Therefore, in that case, Aug-
mented independent labels would have been the best choice, as it can be expanded to a great variety
of tasks. Exploring the broader range of architectures for which this conclusion remains valid will be
the subject of future research. We also leave unexplored the impact of different sampling ways on the
process of learning the model. Looking at how the result varies when we try the same sampling ways as
in [4] is also a subject of future research.

8 Conclusion

After considering eight different data pseudo-labeling approaches in the GLUE 4-task setting, we can
single out the method Soft probability assumption as the best for similar tasks such as RTE and MNLL.
This method excels results on RTE from the original article by 6.2 % and falls behind the original article
on QQP, MNLI, and SST only by 0.5-1.2 %. However, method Augmented independent labels works
as the best method for solving different tasks such as SST and QQP.
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9 Appendix A. Validation set accuracies for different attempts

RTE valid accuracies

H Setting name Attempt 1 Attempt 2 Attempt 3  Attempt 4
Plain(reproduced) 64.6 57.8 63.2 62.7
Independent labels 66.8 68.2 66.4 74.0

Soft independent labels 71.1 69.3 65.0 66.8
Augmented independent labels 67.5 67.1 64.6 65.3
Soft probability assumption 76.9 76.9 71.8 71.1
Soft predicted labels 72.6 74.4 70.8 73.3

Hard predicted labels 73.3 71.8 72.9 72.5
Independent labels frozen head 70.0 72.9 70.8 69.3
Soft independent labels frozen head 71.8 66.4 65.0 67.9

SST valid accuracies
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H Setting name Attempt 1 Attempt 2 Attempt 3  Attempt 4
Plain(reproduced) 92.7 92.1 91.7 89.3
Independent labels 91.6 91.1 90.7 90.4
Soft independent labels 90.8 91.4 91.5 89.5
Augmented independent labels 92.3 91.5 91.5 91.7
Soft probability assumption 92.3 91.6 90.5 90.4
Soft predicted labels 92.1 91.9 91.2 90.5
Hard predicted labels 92.4 91.4 90.5 90.8
Independent labels frozen head 89.9 90.6 90.8 91.9
Soft independent labels frozen head 91.6 90.9 89.1 90.5
QQP valid accuracies
H Setting name Attempt 1  Attempt 2 Attempt 3  Attempt 4
Plain(reproduced) 90.8 90.5 87.1 89.8
Independent labels 87.9 89.1 87.5 90.4
Soft independent labels 90.4 89.8 86.0 89.1
Augmented independent labels 90.3 89.6 90.4 90.3
Soft probability assumption 90.5 90.3 90.0 89.6
Soft predicted labels 90.0 90.4 90.1 90.0
Hard predicted labels 90.1 89.9 89.3 89.9
Independent labels frozen head 90.1 90.5 90.5 89.6
Soft independent labels frozen head 90.2 90.5 89.9 89.1
MNLI valid accuracies
H Setting name Attempt 1 Attempt 2 Attempt 3  Attempt 4
Plain(reproduced) 76.7 77.3 76.4 72.7
Independent labels 73.8 75.0 72.6 76.3
Soft independent labels 76.5 75.8 72.62 74.5
Augmented independent labels 75.5 75.1 75.3 75.0
Soft probability assumption 77.0 76.4 75.4 75.3
Soft predicted labels 75.9 76.0 76.0 75.5
Hard predicted labels 75.9 75.4 75.0 74.5
Independent labels frozen head 76.1 76.0 76.3 73.6
Soft independent labels frozen head 76.8 76.2 75.0 73.5
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