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Abstract

Today, transformer language models serve as a core component for majority of natural language processing
tasks. Industrial application of such models requires minimization of computation time and memory footprint.
Knowledge distillation is one of approaches to address this goal. Existing methods in this field are mainly focused
on reducing the number of layers or dimension of embeddings/hidden representations. Alternative option is to
reduce the number of tokens in vocabulary and therefore the embeddings matrix of the student model. The main
problem with vocabulary minimization is mismatch between input sequences and output class distributions of a
teacher and a student models. As a result, it is impossible to directly apply KL-based knowledge distillation.
We propose two simple yet effective alignment techniques to make knowledge distillation to the students with
reduced vocabulary. Evaluation of distilled models on a number of common benchmarks for Russian such as
Russian SuperGLUE, SberQuAD, RuSentiment, ParaPhaser, Collection-3 demonstrated that our techniques allow
to achieve compression from 17× to 49×, while maintaining quality of 1.7× compressed student with the full-sized
vocabulary, but reduced number of Transformer layers only. We make our code and distilled models available.
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Аннотация

На текущий момент языковые модели типа Трансформер являются основным компонентом
для большинства задач обработки естественного языка. Промышленное применение таких мо-
делей требует минимизации времени вычислений и объема памяти. Дистилляция знаний - один
из подходов к решению этой задачи. Существующие методы в этой области в основном ориен-
тированы на уменьшение количества слоев или размерности эмбеддингов/скрытых состояний.
Другой способ - уменьшить количество токенов в словаре и, следовательно, матрицу эмбеддин-
гов модели-студента. Основной проблемой, которая возникает при уменьшении размера словаря,
является несоответствие между входными последовательностями и предсказываемыми распреде-
лениями классов моделями учителя и студента. В результате невозможно напрямую применить
дистилляцию знаний на основе KL. Мы предлагаем два простых и в тоже время эффективных ме-
тода выравнивания, чтобы применить дистилляцию знаний в студента с уменьшенным словарем.
Оценка дистиллированных моделей на нескольких распространенных русскоязычных бенчмар-
ках, таких как Russian SuperGLUE, SberQuAD, Rusentiment, ParaPhraser, Collection-3 показала,
что предложенные методы позволяют сжать модель от 17 до 49 раз, сохраняя при этом качество
модели-студента с полноразмерным словарем и уменьшенным количеством Трансформер-слоев,
сжатой в 1.7 раз. Дистиллированные модели и код выложены в открытый доступ.

Ключевые слова: языковое моделирование, трансформер, дистилляция знаний, легковесные
модели, русский язык
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1 Introduction

Pre-trained Transformer language models have been found to be very successful across a wide range
of NLP tasks. Most of the recent state-of-the-art models are based on variations of the original Trans-
former (Vaswani et al., 2017) and different self-supervised pre-training techniques like masked language
modeling (Devlin et al., 2019). Such models became very large, starting from hundreds of millions of
parameters (Radford et al., 2018; Devlin et al., 2019; Liu et al., 2019) to hundreds of billions (Brown et
al., 2020; Smith et al., 2022; Rae et al., 2021; Lin et al., 2021). Large models require lots of computa-
tion, memory, and fast accelerators like TPUs/GPUs. It is challenging to use large models in practical
applications where prediction time is critical and available disk/RAM is limited.

General approaches like pruning, quantization, and knowledge distillation (KD) were applied to Trans-
former language models to make them faster and smaller. Pruning (LeCun et al., 1989) removes some
weights of the large models with negligible degradation of predictions. Quantization (Gong et al., 2014)
reduces weights precision to float16, int8, int4, or even bits. Knowledge distillation (Buciluǎ et al.,
2006; Ba and Caruana, 2014; Hinton et al., 2015) (KD) is used to train smaller student model to mimic
behaviour of the larger teacher model.

However, in general, knowledge distillation relies on Kullback-Leibler (KL) divergence over teacher
and student predictions. Language models are trained to predict tokens probability distribution in a
vocabulary. It implies that teacher and student should share the same vocabulary. If a teacher and student
models have different vocabularies, KL loss can not be directly applied as they have different sets of
prediction classes. It makes KL-based knowledge distillation for models with mismatched vocabular-
ies impossible. Another outcome of mismatched vocabularies is different tokenization for teacher and
student models. It leads to different lengths of input and, therefore, output sequences, which also adds
ambiguity to KL-based distillation in this case.

A ratio of embeddings parameters becomes larger as student models become smaller by reducing the
number of Transformer layers and/or dimension of hidden representations. Embeddings can get over
50% of all parameters for small models as shown on Figure 1.

Figure 1: Ratio of number of parameters for embeddings to the full model. In smaller models embeddings
have higher fraction of parameters compared to other models with the same vocabulary size. Selected
models for English language are shown with the blue markers. The models are denoted by size of hidden
representation (H) and number of layers (L).

One of the possible ways to reduce a fraction of embeddings parameters is to make the size of student
vocabulary smaller. Moreover, changing student vocabulary could be reasonable for distilling to another
domain or from multilingual to monolingual models. Changing student vocabulary leads to the problem
of knowledge distillation with mismatched vocabularies.

This paper focuses on applying knowledge distillation to train student models with a smaller vocab-
ulary than the teacher. We propose several strategies for output/intermediate representations alignment.
The first one uses teacher and student representations corresponding to the tokens found in both vocabu-
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laries (match strategy). The second aligns the sequences, produced by student tokenizer, with the teacher
by aggregating representations corresponding to an alignment (reduce strategy).

We show that teacher’s knowledge can be effectively transferred to the student with mismatched
vocabulary. We pre-train student models with proposed KD methods and evaluate them on a number
of common benchmarks for the Russian language such as Russian SuperGLUE, SberQuAD, RuSenti-
ment, ParaPhraser, and NER on Collection-3. Our students are from 17× to 49× and up to 104× faster
on GPU than the teacher while having competitive quality to the 1.7× compressed student. We make our
code 1 and pre-trained models2 available online.

2 Related work

Knowledge distillation can be used to train task-specific fine-tuned and general pre-trained models.
Task-specific distillation (Chia et al., 2018; Sun et al., 2019; Tang et al., 2019; Aguilar et al., 2020) takes
two steps: fine-tuning a teacher model on a task and distilling it to a student model. The disadvantage of
such approach is that it requires repeating both steps for each new task. Large teacher model fine-tuning
could be too expensive.

Such models as DistilBERT (Sanh et al., 2019), TinyBERT (Jiao et al., 2020), MobileBERT (Sun et al.,
2020b), MiniLM (Wang et al., 2020; Wang et al., 2021) use general pre-training distillation. Distillation
could be performed only once to pre-train a general student model, and then student model fine-tunes
on tasks, removing expensive teacher fine-tuning step. DistilBERT uses a triple loss: distillation loss
between student and teacher output probabilities, student masked language modeling loss, and cosine
loss for hidden representation of student and teacher models. TinyBERT adds trainable student-teacher
projections for embeddings and Transformer layer output representations. These projections allow train-
ing student models with Transformer layer hiddens of arbitrary size. TinyBERT, MobileBERT, MiniLM
use attention matrices as an additional source of knowledge for distillation. A student model trains to
produce similar attention matrices to a teacher by additional loss term.

However, previously mentioned pre-training knowledge distillation approaches are not flexible
enough. Student model vocabulary should be the same as a teacher model to compute the distillation
loss. Different vocabularies also lead to different tokenization, hence different student and teacher se-
quence lengths. Therefore, student-teacher output probabilites, hiddens and attention matrices are not
aligned to be used with losses mentioned above.

(Zhao et al., 2021) addresses these problems with mixed-vocabulary training. Authors propose first
to pre-train student embedding matrix together with teacher model and then use it for regular student
model MLM pre-training. Tokenization for each word in mixed-vocabulary training is performed by
randomly selecting teacher or student vocabulary with corresponding embeddings matrix. This way,
only the embeddings matrix is trained using teacher model knowledge. All other parameters of the
smaller student model do not benefit from the teacher model. In our work, we propose methods that
allow training student model with knowledge distillation in one stage and using teacher knowledge from
all layers.

The problem with mismatched vocabulary is actually more general. Vocabulary tokens are essen-
tially labels for a token classification task, that is, language modeling. In other words, the more general
problem is knowledge distillation for teacher and student models with different sets of labels. Instead of
predictions distillation, pre-classification layer outputs or other representations might be used for distilla-
tion (Tian et al., 2020; Sun et al., 2020a), making a connection to representation-based learning (Bromley
et al., 1993; Chen et al., 2020).

Alternatively, the number of parameters in Transformer models can be reduced by parameters shar-
ing (Lan et al., 2020), embeddings matrix factorization (Sun et al., 2020b; Hrinchuk et al., 2019; Lan et
al., 2020), and pruning (Voita et al., 2019; Gordon et al., 2020). These approaches are complementary to
knowledge distillation in general and to our methods as well.

1github.com/ayeffkay/rubert-tiny
2See models with distil- prefix at huggingface.co/DeepPavlov
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3 Distillation strategy

3.1 Background
One of the first attempts of pre-trained Transformer language model distillation is DistilBERT (Sanh et
al., 2019). Authors introduce training objective which is a linear combination of the supervised masked
language modeling (MLM) loss:

ℒ𝑚𝑚𝑚𝑚𝑚𝑚 = −
|𝑋𝑋𝑡𝑡|∑︁
𝑖𝑖=1,

𝑖𝑖∈masked_ids

|𝑉𝑉𝑡𝑡|∑︁
𝑗𝑗=1

𝑦𝑦𝑖𝑖𝑗𝑗 log 𝑝𝑝
𝑠𝑠
𝑖𝑖𝑗𝑗 , (1)

distillation loss over the soft target probabilities of the teacher:

ℒ𝑐𝑐𝑐𝑐 = −
|𝑋𝑋𝑡𝑡|∑︁
𝑖𝑖=1,

𝑖𝑖𝑖∈masked_ids

|𝑉𝑉𝑡𝑡|∑︁
𝑗𝑗=1

𝑝𝑝𝑡𝑡𝑖𝑖𝑗𝑗 log 𝑝𝑝
𝑠𝑠
𝑖𝑖𝑗𝑗 , (2)

and cosine distance loss for the student and teacher hidden representations:

ℒ𝑐𝑐𝑐𝑐𝑠𝑠 =

|𝑋𝑋𝑡𝑡|∑︁
𝑖𝑖=1,

𝑖𝑖𝑖∈masked_ids

cos_dist
(︀
ℎ𝑡𝑡𝑛𝑛,𝑖𝑖, ℎ

𝑠𝑠
𝑚𝑚,𝑖𝑖

)︀
, cos_dist

(︀
ℎ𝑡𝑡𝑛𝑛,𝑖𝑖, ℎ

𝑠𝑠
𝑚𝑚,𝑖𝑖

)︀
= 1−

⟨ℎ𝑡𝑡𝑛𝑛,𝑖𝑖, ℎ𝑠𝑠𝑚𝑚,𝑖𝑖⟩
‖ℎ𝑡𝑡𝑛𝑛,𝑖𝑖‖‖ℎ𝑠𝑠𝑚𝑚,𝑖𝑖‖

, (3)

here masked_ids is a set of subword indices, masked with some probability; |𝑋𝑋𝑡𝑡| is a subwords sequence
length obtained after input sequence tokenization by teacher tokenizer; 𝑉𝑉𝑡𝑡 is a teacher vocabulary with
the size |𝑉𝑉𝑡𝑡|; 𝑦𝑦𝑖𝑖𝑗𝑗 is a masked subword index in a vocabulary; 𝑝𝑝𝑠𝑠, 𝑝𝑝𝑡𝑡 are subword probabilities produced
by student and teacher models; ℎ𝑠𝑠𝑚𝑚, ℎ𝑡𝑡𝑛𝑛 are student and teacher hidden states taken from 𝑚𝑚-th and 𝑛𝑛-th
Transformer layers. Alternatively Kullback-Leibler divergence can be used instead of ℒ𝑐𝑐𝑐𝑐.3

Usually, it is assumed that a teacher and a student use the same vocabulary, i.e. inputs for the teacher
and the student will match after tokenization. But if a teacher and a student use different vocabularies,
then tokenized inputs will be different and will not always have the same length. Further we represent
the problem statement more formally and provide our solutions.

3.2 Problem statement
Given teacher with vocabulary 𝑉𝑉𝑡𝑡 and student with vocabulary 𝑉𝑉𝑠𝑠, such that |𝑉𝑉𝑠𝑠| < |𝑉𝑉𝑡𝑡|, 𝑉𝑉𝑠𝑠 ∩ 𝑉𝑉𝑡𝑡 ̸= ∅ 4.
Then LM output probabilities shapes will be (|𝑋𝑋𝑡𝑡|, |𝑉𝑉𝑡𝑡|), (|𝑋𝑋𝑠𝑠|, |𝑉𝑉𝑠𝑠|) and hidden states shapes will be
(|𝑋𝑋𝑡𝑡| , 𝑑𝑑𝑡𝑡), (|𝑋𝑋𝑠𝑠| , 𝑑𝑑𝑠𝑠) for teacher and student respectively, where 𝑋𝑋𝑡𝑡 and 𝑋𝑋𝑠𝑠 are inputs produced after
tokenization by teacher and student tokenizers, 𝑑𝑑𝑠𝑠 and 𝑑𝑑𝑡𝑡 are hidden states dimension. As mentioned
above, in general 𝑋𝑋𝑡𝑡 ̸= 𝑋𝑋𝑠𝑠 and 𝑉𝑉𝑡𝑡 ̸= 𝑉𝑉𝑠𝑠. The task is to define alignment 𝒳𝒳 : 𝑋𝑋𝑠𝑠 → 𝑋𝑋𝑡𝑡 for sequence
length dimension to obtain |𝑋𝑋𝑠𝑠| = |𝑋𝑋𝑡𝑡| and mapping 𝒱𝒱 : 𝑉𝑉𝑠𝑠 → 𝑉𝑉𝑡𝑡 between vocabularies.

For simplicity we will assume that |𝑋𝑋𝑡𝑡| ≤ |𝑋𝑋𝑠𝑠|. The rationale behind this lies in the observation
that because of reduced vocabulary size |𝑉𝑉𝑠𝑠| BPE tokenization algorithm will keep less amount of more
frequent subwords, thus leading to longer student-generated outputs. Our observation confirmed when
we compared sequence lengths produced by teacher and student pre-trained tokenizers with ∼ 1.2× 105

and ∼ 3× 104 vocabulary sizes respectively. On the corpus of ∼ 2.7× 107 sequences only 0.2% of the
student-tokenized sequences were shorter than the teacher.

3The difference will be in the term 𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖 log
(︀
𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖

)︀
.

4We emphasize that non-empty intersection condition between teacher and student vocabularies is necessary, because the
strategies below cannot be applied in the case of its complete mismatch.
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3.3 Sequence length dimension alignment
We propose two strategies for sequence length dimension alignment: match strategy and reduce strategy.
The first one can be applied both to the sequence length and vocabulary dimension, the second one for
sequence length dimension only.

For the match strategy, after building student vocabularies of sizes 5 × 103, 104, 2 × 104, 3 × 104

using BPE subword tokenization algorithm we found that ∼ 99% student subwords are in the teacher
vocabulary of ∼ 1.2× 105 size. Therefore, we can take into account only matching subwords and mask
all mismatched subwords (Figure 2)

Teacher tokenizer output He told us a very excit ##ing story .

Student tokenizer output He told us a ve ##ry ex ##c ##ti sto ##ry

Matched output He told us a .

.##i ##ng

Figure 2: Match strategy for sequence length dimension alignment. The first sequence is produced by
the teacher’s tokenizer, and the second by the student’s.

If 𝑛𝑛match subwords in sequence and |𝑉𝑉match| subwords in vocabulary match, then hidden states and
output LM probabilities shapes are transformed as follows:

(|𝑋𝑋𝑡𝑡|, 𝑑𝑑𝑡𝑡) ↦→ (𝑛𝑛match, 𝑑𝑑𝑡𝑡) , (|𝑋𝑋𝑡𝑡|, |𝑉𝑉𝑡𝑡|) ↦→ (𝑛𝑛match, |𝑉𝑉match|) ,
(|𝑋𝑋𝑠𝑠|, 𝑑𝑑𝑠𝑠) ↦→ (𝑛𝑛match, 𝑑𝑑𝑠𝑠) , (|𝑋𝑋𝑠𝑠|, |𝑉𝑉𝑠𝑠|) ↦→ (𝑛𝑛match, |𝑉𝑉match|) .

(4)

This makes sequences equal by length and aligned for teacher and student models. LM output prob-
abilities also have equal shapes. KL or CE losses can be used for distillation now with match strategy.

It can be seen that match strategy lowers overhead required to compute losses. The main drawback
is that we lose from 75% (for 3 × 104 vocabulary size) to 96% (for 5 × 103 vocabulary size) subwords
that can be used for distillation from the teacher. Another drawback is that embeddings corresponding
to the matching subwords might occur in different contexts for teacher and student and thus might cover
different meanings.

In general the task of finding correspondence between teacher- and student-tokenized sequences is
ambiguous. For example in Figure 2 depending on the tokenizer we can obtain highly mismatched
subword sequences:

(5) (Teacher) excit ##ing
(Student) ex ##c ##i ##ti ##ng

In reduce alignment strategy an auxiliary input for a student model receives teacher subwords greedily
split into student subwords from left to right. Then student’s intermediate/output representations cor-
responding to the one teacher subword are aggregated by summation as shown on Figure 3. Assume
that 𝑖𝑖-th teacher subword was splitted by student subwords with indices 𝑘𝑘𝑖𝑖1, 𝑘𝑘

𝑖𝑖
2, . . . , 𝑘𝑘

𝑖𝑖
𝑙𝑙 . Then formally,

aggregation procedure for hidden states can be written as follows:

ℎ𝑡𝑡𝑖𝑖 =
∑︁

𝑗𝑗∈{𝑘𝑘𝑖𝑖1,...,𝑘𝑘𝑖𝑖𝑙𝑙}

ℎ𝑠𝑠𝑗𝑗 , 𝑖𝑖 = 1, |𝑋𝑋𝑡𝑡| (6)

Pre-softmax outputs aggregation procedure can be represented in a similar way.
This allows the student to learn mapping from the teacher’s vocabulary.
Reduce strategy leaves teacher representations shapes unchanged, and for the student we obtain se-

quence aligned to teacher sequence length:

(|𝑋𝑋𝑠𝑠|, 𝑑𝑑𝑠𝑠) ↦→ (|𝑋𝑋𝑡𝑡|, 𝑑𝑑𝑠𝑠) , (|𝑋𝑋𝑠𝑠|, |𝑉𝑉𝑠𝑠|) ↦→ (|𝑋𝑋𝑡𝑡|, |𝑉𝑉𝑠𝑠|) (7)
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This can be combined with the match strategy, if vocabulary alignment needed:

(|𝑋𝑋𝑡𝑡|, |𝑉𝑉𝑠𝑠|) ↦→ (|𝑋𝑋𝑡𝑡|, |𝑉𝑉match|) . (8)

Teacher tokenizer output He told us a very excit ##ing story .

Teacher2student output He told us a ve ##ry exc ##it ##ing sto ##ry

Student Transformer layer
output / LM head logits

.

Figure 3: Reduce strategy. The first sequence is an output from the teacher’s tokenizer, the second is a
greedy split result of the first sequence by subwords from the student’s vocabulary.

Reduce strategy combined with match over vocabulary introduces another way to use KL or CE losses
for distillation. Compared to the match strategy only, we can use all teacher outputs and representations,
so reducing the student sequence allows to extract knowledge for all tokens of the teacher vocabulary.
But this approach still skips subwords from the student’s vocabulary which are not found in the teacher’s.
This can be partially offset by passing two inputs to the student model. The first one is a teacher-to-
student split with subsequent reduction to compute distillation losses, and the second output from the
student’s tokenizer to compute supervised masked language modeling loss. The drawbacks of reduce
compared to match strategy are higher overhead to compute losses and greedy split which might be not
optimal.

4 Experiments

4.1 Pre-training
Corpus Teacher pre-training and distillation to the students was made on the same Russian Language
data of ∼ 27M sentences collected from OpenSubtitles (Lison and Tiedemann, 2016), Dirty & Pikabu
web resourses, and Social Media segment of Taiga corpus (Shavrina and Shapovalova, 2017).

Models We used pre-trained rubert-base-cased-conversational (12-layer Russian BERT model)5 as a
teacher with hidden states dimension of 768 and vocabulary size of 120K. It was the largest and the
slowest model in our experiments.

Two students distil-base 6 and distil-small7 have the same vocabulary and dimension of hidden
states as the teacher, but a number of Transformer layers were reduced to 6 and 2. To train distil-
base and distil-small we extended the distillation strategy proposed for DistilBERT (Sanh et al.,
2019). Namely, we added MSE loss for averaged attention maps and cosine distance loss for averaged
hidden states. To average teacher attention maps and hidden states, we grouped them by six Transformer
layers for 2-layer distil-tiny and by two for 6-layer distil-base (because the teacher model has
12 Transformer layers).

Models distil-tiny(30|20|10|5) were students with 3 Transformer layers, hidden states dimen-
sion of 264 and reduced vocabulary sizes of 30k, 20k, 10k and 5k. We applied proposed alignment
strategies to distil-tiny* models.

We compare proposed distilled models to other available state-of-the-art distilled models for Rus-
sian rubert-tiny and rubert-tiny28. Models rubert-tiny and rubert-tiny2 are 3-layer Trans-

5huggingface.co/DeepPavlov/rubert-base-cased-conversational
6huggingface.co/DeepPavlov/distilrubert-base-cased-conversational
7huggingface.co/DeepPavlov/distilrubert-tiny-cased-conversational
8huggingface.co/cointegrated/rubert-tiny, huggingface.co/cointegrated/rubert-tiny2, habr.com/ru/post/562064/
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formers distilled from multiple teachers and combining MLM and Translation Ranking Modeling
(TLM, (Feng et al., 2020)) losses.

All models that we trained and evaluated are listed in Appendix A Table 3 with corresponding infer-
ence speed and memory requirements.

Distillation with reduced vocabulary We distilled the teacher model into 3-layer student model
distil-tiny30 with 30k subwords in vocabulary. We tried different combinations of loss functions
and alignment strategies. Combinations are summarized in Figure 4. In our experiments, we use MLM
loss in summation with KL or MSE, or both of them. To compute KL loss teacher and student pre-
softmax outputs should be aligned: 1. with the match strategy by sequence and vocabulary (KL-match);
2. with the reduce-match strategy, where reduction was made by sequence dimension and match-by
vocabulary (KL-reduce-match). MSE loss for hidden states distillation was applied with match and
reduce strategies. To match hidden sizes projection layers were used (see details in Appendix B.2).

To apply reduce strategy, we passed two inputs to the student: 1. a student-tokenized input for MLM
loss; 2. teacher inputs tokenized by student for MSE and KL. Student representations corresponding to
the student-tokenized input were not aligned and were not used to compute MSE or KL divergence.

MLM

KL-match KL-reduce-match

MSE-reduce MSE-match

Figure 4: Combinations of loss functions (MLM, KL, MSE) and alignment strategies (reduce, match,
reduce-match).

We initialized student models’ embeddings by re-using teacher embeddings (see details in Ap-
pendix B.1). Other training details could be found in Appendix B.

Ablation To check whether match and reduce strategies are effective for distilling knowledge from the
teacher, we pre-trained distil-tiny30 using only MLM loss and without any distillation losses. We
also performed pre-training without KL divergence loss term to evaluate its contribution to KL-match &
MLM & MSE combination.

To evaluate effect of reduced vocabulary on the distillation quality, we compared distil-tiny*
models with reduced vocabulary to distil-base and distil-small with the same vocabulary as the
teacher.

To determine how further vocabulary size reduction affects the distillation quality, we also distilled
teacher into distil-tiny models with 5k, 10k and 20k vocabulary sizes (results are in Appendix C).

4.2 Fine-tuning
For evaluation we fine-tuned our models on ParaPhraser (Pivovarova et al., 2017), RuSentiment (Rogers
et al., 2018), SberQuAD (Efimov et al., 2020), NER Collection-3 (Mozharova and Loukachevitch, 2016)
and Russian SuperGLUE (Shavrina et al., 2020) datasets. Their description is given in Appendix D and
Table 5.

Results for ParaPhraser, Collection-3, RuSentiment and SberQuAD are collected in the Table 1. From
Table 1 we see expected result that pre-training with MLM is better than random initialization for further
fine-tuning. Also, pre-training with distillation improves student models.

Results for the best distilled models on RussianSuperGLUE test sets are shown in the Table 2. We use
the following naming conventions for distil-tiny30 models for RussianSuperGLUE results:

• MLM & KL & MSE (RT) with reduce strategy and trainable hiddens projections is distil-tiny-1;
• MLM & KL & MSE (MT) with the same losses combination and match strategy is distil-tiny-2;
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• MLM & MSE (RF) with reduce strategy and frozen projections for hidden states is distil-tiny-3.
We selected MLM & KL & MSE (MT) over MLM & KL & MSE (RF) despite the better average perform-
ance as this difference is caused by SberQuAD scores only. On the other datasets MLM & KL & MSE
(MT) performs better or almost the same as MLM & KL & MSE (RF).

Logits distillation with KL divergence loss Proposed match and reduce-match strategies to align pre-
softmax outputs of the teacher and student models improve results obtained by MLM pre-training only.
Results from Table 1 show that match strategy performs better than reduce-match. Reduction of logits
via summing might not result in the true probability of subword compounding of reduced subwords.
The teacher model pre-training procedure does not guarantee that subword probability would be equal to
multiplication of its compounding subwords probabilities.

Hidden states distillation Distilling hidden states with MSE loss can improve KL-match & MLM com-
bination. On average, reduce strategy for hidden states alignment works better than match in combina-
tions with KL divergence and without it. Distilling from hidden states allows extracting more knowledge
from the teacher and its intermediate states. This observation holds for both the results in Table 1 and
Russian SuperGLUE in Table 2.

Surprisingly, frozen projections, that is, non-trainable random projections, perform better for some
of the configurations than trainable. For SberQuAD dataset, frozen projections steadily show higher
F1 and EM scores, e.g., improving F1 for trainable projections from +1 to +26 F1 points. Though
the result is not expected, it has also been previously observed that random projections could be very
effective (Wieting and Kiela, 2019).

Model Proj Distillation Losses ParaPhraser RuSentiment Collection-3 SberQuAD

F1 F1 (weighted) Entity F1 F1 EM

teacher - MLM, NSP 86.30±0.96 76.00±0.53 97.01± 0.13 83.82±0.15 65.60±0.12

distil-base - MLM, KL, MSE, Cos 82.86±0.47 75.82±0.98 96.40±0.20 80.05±0.43 60.96±0.51

distil-small - 75.53±1.03 74.58±0.10 94.20±0.20 68.92±0.30 48.21±0.39

distil-tiny30

- - 72.48±0.32 69.27±0.35 75.61±0.41 17.54±0.09 4.46±0.14

- MLM 74.54±0.20 71.68±0.30 92.04±0.26 38.17±0.21 22.12±0.30

M MLM, KL 74.59±0.20 72.90±0.20 93.19±0.17 52.64±0.37 34.74±0.41

RM 74.40±0.23 72.98±0.19 93.01±0.11 38.41±0.54 22.20±0.51

MF

MLM, KL, MSE

75.27±0.20 73.06±0.21 93.30±0.14 49.43±1.83 31.33±1.69

MT 74.99±0.20 73.38±0.20 93.52±0.11 53.14±0.35 35.85±0.47

RF 74.68±0.20 73.27±0.20 93.28±0.09 60.26±0.55 40.82±0.61

RT 75.06±0.20 73.70±0.20 93.71±0.10 55.02±0.62 36.28±0.62

MF

MLM, MSE

74.56±0.20 72.80±0.20 92.64±0.13 42.62±0.62 25.85±0.51

MT 74.25±0.30 73.11±0.23 93.06±0.11 43.37±0.38 26.08±0.49

RF 75.23±0.17 73.45±0.17 93.87±0.09 69.03±0.24 48.46±0.36

RT 74.81±0.16 73.12±0.27 93.26±0.12 43.26±0.73 26.29±0.54

rubert-tiny T MLM, TLM, MSE 74.36±0.23 69.34±0.22 91.23±0.17 39.74±0.52 23.70±0.48

rubert-tiny2 78.72±0.15 71.84±0.24 93.72±0.11 67.80±0.22 47.64±0.32

Table 1: Fine-tuning results for ParaPhraser, RuSentiment, Colleciton-3 and SberQuAD. "Proj" column
means type of alignment (first letter, match-M, reduce-R) and projection mode for hidden states (second
letter, frozen-F, trainable-T). RM means reduce-match combination for KL loss. Empty "Losses" cell is
to denote student without pre-training.

Distillation without KL divergence loss Surprisingly, the best of distil-tiny30 students are MLM
& MSE (RF) with reduce strategy and frozen projections did not use KL loss at all. MLM & MSE (RF)
is very close by quality to distil-small and rubert-tiny2, requiring 10× (resp. 3×) less memory
and being 2× (resp. 5×) faster on CPU. Moreover, for datasets from Table 1, except SberQuAD, losses
combinations without KL divergence work very close to combinations with it. This result also holds on
majority of Russian SuperGLUE tasks.

Kolesnikova A., Kuratov Y., Konovalov V., Burtsev M.
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The low impact and inefficiency of KL-loss for distillation might be due to match a shift in matching
subwords meanings in student and teacher vocabulary. But we do not have a solid proof for that and
further investigation is needed.

Model Score LiDi RCB PARus MuSeRC TERRa RUSSE RWSD DNQA RuCoS

Mcorr. F1/Acc. Acc. F1a/EM Acc. Acc. Acc. Acc. F1/EM

teacher 54.8 21.2 31.1/50.8 57.2 67.5/27.1 51.4 71.1 62.3 63 79/78.5
distil-base 49.84 8.5 33.0/47.1 61.0 51.1/6.3 49.5 63.5 63.0 65.5 69.0/68.6
distil-small 45.24 3.7 34.7/46.5 65.8 48.6/7.8 48.5 55.0 66.9 58.6 40.0/39.7

distil-tiny-1 42.63 4.2 28.8/48.9 49.0 40.4/6.6 53.7 55.1 63.6 60.4 35.5/35.2
distil-tiny-2 42.86 3.1 25.8/45.4 53.6 40.4/6.6 52.4 55.7 63.6 61.7 36.5/36.5
distil-tiny-3 44 4.6 35.0/50.1 52.7 43.3/7.4 52.8 56.5 66.9 61.7 33.0/32.7

rubert-tiny 42 -0.9 31.5/43.0 52.8 46.5/9.3 49.6 54.3 66.5 63.8 27.0/26.7
rubert-tiny2 45.19 17 36.7/43.7 57.1 44.5/9.8 50.4 59.5 65.9 58.7 31.0/30.5

Table 2: The model performance on the Russian SuperGLUE test sets. Matthews correlation for the
LiDiRus task is scaled to [−100, 100].

The results on Russian SuperGLUE partially meet the results on ParaPhraser, Collection-3, RuSen-
timent and SberQuAD. The teacher model significantly outperforms the rest. However, on PARus and
RWSD distil-small achieves better results. This might be due to the limited size of the training
data. All distil-tiny* models achieve comparable results with the distil-tiny-39 slightly ahead,
so the contribution of the KL loss to the student performance is not clear. The rubert-tiny2 model
outperforms rubert-tiny confirming the previous results.

Dependence of model score on inference time and memory The dependence of models Russian
SuperGLUE score on GPU 10 inference time and memory is shown on Figure 5.
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Figure 5: The dependence of models Russian SuperGLUE average score on GPU inference time and
memory. Random batches of size 16 and sequence length 512 were used.

From Figure 5a we can conclude that memory required for inference and model quality are not always
correlated (e.g. distil-base and rubert-tiny2 are worse by quality than the teacher but require more
memory). It is caused by differences in the particular implementations of the Transformer architectures.
Our distil-tiny models have the lowest memory consumption. At the same time from Figure 5b we
can conclude that model score and inference time are highly correlated.

9We make it available at https://huggingface.co/DeepPavlov/distilrubert-tiny-cased-conversational-v1
10See hardware details in Appendix A
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5 Conclusions and future work

We introduced two language model distillation strategies allowing to reduce student’s vocabulary. Match
strategy uses only representations for the subwords which are common for a teacher and a student vocab-
ularies. Reduce strategy aggregates a student’s subwords representations corresponding to particular
teacher’s subwords. We performed experiments to show how vocabulary reduction affects the distilla-
tion process and how our strategies can be effectively applied for distillation based on teacher output
and intermediate representations. We trained student models of different sizes which are from 1.3× to
49× smaller than the teacher while maintaining a good quality compared to the other SOTA models for
Russian of similar size. We found that distillation without Kullback-Leibler divergence loss for models
with reduced vocabularies performs the best. Our experiments showed that 17× compressed student with
reduced vocabulary can work very close to 1.3× compressed student with the same vocabulary as the
teacher. Additionally, we made the best of our models and code to train them publicly available.

As further improvements, we consider other ways of distilling intermediate representations based on
contrastive and metric learning approaches as well as the more accurate mapping between mismatched
subwords in vocabularies to transfer as much knowledge as possible during the distillation process.
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A Models

We measured inference time and memory required for models from the Table 3 on NVIDIA GeForce
GTX 1080 Ti and Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz using benchmark utils from Trans-
formers library11. For testing random sequences with batch_size = 16 and sequence_length = 512
were generated. We run each model 100 times to reduce an effect of possible external factors on time
and memory values. Some of the distilled models require more memory for inference due to different
implementations of DistilBERT and BERT architectures.

Model # layers # vocab, K # hid Params, M Mem, MB Inference time, ms Inference mem, MB

cpu gpu cpu gpu

teacher 12
119.5 768

177.9 679 5283.2 186.6 1550 1938
distil-base 6 135.5 517 2335.4 55.3 2177 2794
distil-small 2 107.1 409 802.4 1.5 1541 1810

distil-tiny30

3

30.5

264

10.4 41 374.7 2 714 1158
distil-tiny20 20 7.6 30 357.6 1.9 695 1148
distil-tiny10 10 5 19 356.5 1.8 679 1138
distil-tiny5 5 3.6 14 354.9 1.8 664 1126

rubert-tiny 3 29.6 312 11.8 45.5 942.9 2.2 1308 2088
rubert-tiny2 83.8 29.3 112 1786.6 2.3 3054 3848

Table 3: Teacher and student models characteristics. All models have 12 attention heads. "Mem" column
is memory on disk required to store model, while "Inference time"/"Inference mem" is time/memory re-
quired for model to make inference on a given batch. Inference tests were made on batches of 16 random
sequences with length 512. For distil-tiny* models, * corresponds to a vocabulary size in thousands.

Comparing to the teacher distil-base 1.3× lighter and 3.5× faster on GPU. At the same time
distil-small is 1.7× lighter and 126× faster on GPU. But the memory required for inference remains
almost the same as for teacher.

As vocabulary size decreases, the students distil-tiny are getting lighter: from 17× to 49× for
models from 30k to 5k vocabulary. Inference time and memory holds almost the same order. Models
distil-tiny are up to 104× faster on GPU; memory consumption is up to 1.7 times lower on GPU.
But still distil-small is the fastest of all students because of the lowest number of Transformer layers.

Nevertheless, rubert-tiny is 15× lighter (rubert-tiny2 6×) than our teacher. Both models are 85×
faster on GPU, but require even more memory for inference.

B Training details

Our code is based on DistilBERT open-source implementation12. We trained students on 8 Tesla P100-
SXM2-16Gb for 64 epochs with batch_size = 4, gradient_accumulation_steps = 128 and
AdamW optimizer (Loshchilov and Hutter, 2017). For learning rate we applied warmup from 0 to 5𝑒𝑒−4 and
when required number of warmup steps passed, learning rate was halved after three validation epochs, if
validation loss was not improved. We used DeepPavlov library (Burtsev et al., 2018) for our fine-tuning
experiments.

B.1 Weights initialization
We initialized student models with parameters from the teacher. To initialize student embeddings we
made the following steps:

1. Subwords from teacher vocabulary were split by student subwords (see reduce in Sec. 3.3).
2. For each student subword we collected corresponding teacher subwords in which that subword

occured (according to the splits from previous step).
11huggingface.co/docs/transformers/benchmarks
12github.com/huggingface/transformers/tree/master/examples/research_projects/distillation
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3. Student subword embeddings were initialized with averaged embeddings of the corresponding
teacher subwords.

To initialize student layers, 12 Transformer layers of the teacher were grouped by 4 and averaged to
match 3 student layers. Then we cut them to match student hidden states dimension.

B.2 Distilling teacher hidden states
The following steps were made:

1. Student and teacher model have different number of Transformer layers. Therefore, for each input
token we averaged outputs of all Transformer layers for this token.

2. Match or reduce strategies were applied to align student sequence length dimension.
3. Averaged and aligned student hidden states were projected by fully-connected layer to match the

teacher hidden states dimension. We initialized projection layers randomly (He et al., 2015) and use
them in two modes – frozen and trainable.

4. MSE loss computed between aligned student and teacher hidden states.

C Experiments with different vocabulary sizes

As vocabulary size decreased, we expected more teacher knowledge would be lost, and students quality
would decrease proportionally. Surprisingly we do not see this effect. For the same combination of
losses KL-match & MLM we observe two groups of results in Table 4: 1. Scores on ParaPhraser and
SberSQuAD increase as vocabulary size decreases. 2. Scores on RuSentiment and Collection-3 decrease
as vocabulary become smaller.

Model Proj Distillation Losses ParaPhraser RuSentiment Collection-3 SberQuAD

F1 F1 (weighted) Entity F1 F1 EM

teacher - MLM, NSP 86.30±0.96 76.00±0.53 97.01± 0.13 83.82±0.15 65.60±0.12

distil-base - MLM, KL, MSE, Cos 82.86±0.47 75.82±0.98 96.40±0.20 80.05±0.43 60.96±0.51

distil-small - 75.53±1.03 74.58±0.10 94.20±0.20 68.92±0.30 48.21±0.39

distil-tiny30

M MLM, KL

74.59±0.20 72.90±0.20 93.19±0.17 52.64±0.37 34.74±0.41

distil-tiny20 74.35±0.59 72.49±0.21 92.57±0.15 48.46±1.39 31.11±1.34

distil-tiny10 74.58±0.24 72.50±0.24 92.20±0.14 64.05±0.82 44.66±0.83

distil-tiny5 74.88±0.33 70.86± 0.29 91.43±0.15 67.46±0.26 47.82±0.26

Table 4: Results for students with different vocabulary sizes. Teacher, distil-base, distil-small have 120k
tokens in vocabulary.

D Fine-tuning datasets

ParaPhraser is a set of sentence pairs collected from news headlines and annotated as precise paraphrase,
near paraphrase and non-paraphrase. The task we solve is binary classification – predict whether sen-
tence pairs are paraphrases (precise or near paraphrases) or not. RuSentiment is a dataset for sentiment
analysis of public posts on Russian social network VKontakte. Five categories were annotated "Neutral",
"Negative", "Positive", "Speech Act", and "Skip". SberQuAD is a Russian QA dataset for a reading com-
prehension evaluation which contains paragraph–question–answer triples. Questions were constructed
in such a way that answer is a some paragraph span. For NER task we used Collection-3: Persons-1000
collection13 which contains names of persons, additionally annotated with organizations and locations
named entities.

RussianGLUE is an advanced Russian general language understanding evaluation benchmark that con-
tains nine tasks, collected and organized similarly to the SuperGLUE (Wang et al., 2019) methodology.
The benchmark can be divided into six groups including the general diagnostics of language models,
common sense understanding, natural language inference, reasoning, machine reading and world know-
ledge.

13ai-center.botik.ru/Airec/index.php/ru/collections/28-persons-1000
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Dataset Type Metric Train Validation Test

ParaPhraser Classification F1 6702 500 1899
RuSentiment F1 (weighted) 31030 3448 4961

SberQuAD Span prediction F1, EM 45328 5036 -
Collection-3 NER Entity F1 9301 2153 1922

Russian SuperGLUE

RUSSE Common Sense Acc 19845 8508 18892
PARus 500 100 400

TERRa
NLI

Acc 2616 307 3198
RCB F1, Acc. 438 220 438
LiDiRus MCC 0 0 1104

RWSD Reasoning Acc 606 204 154

MuSeRC Machine Reading F1, EM 500 100 322
RuCoS 72193 7577 7257

DaNetQA World Knowledge Acc 1749 821 805

Table 5: Summary of the common benchmark datasets for Russian with train/validation/test split sizes.

Kolesnikova A., Kuratov Y., Konovalov V., Burtsev M.

16


	Kolesnikova A et al.: Knowledge Distillation of Russian Language Models with Reduction of Vocabulary

