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Abstract

Text Generation Models (TGMs) succeed in creating text that matches human language style reasonably well.
Detectors that can distinguish between TGM-generated text and human-written ones play an important role in pre-
venting abuse of TGM. In this paper, we describe our pipeline for the two DIALOG-22 RuATD tasks: detecting
generated text (binary task) and classification of which model was used to generate text (multiclass task) (Shamar-
dina et al., 2022). We achieved 1st place on the binary classification task with an accuracy score of 0.82995 on the
private test set and 4th place on the multiclass classification task with an accuracy score of 0.62856 on the private
test set. We proposed an ensemble method of different pre-trained models based on the attention mechanism'.
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Annoramug

MO,ILQ.HI/I TeHepalnuu TEKCTa YCIEIIHO CUHTE3UPYIOT TCKCT, KOTOpLII;'I CJIO2KHO OTJIMYUM OT HaIIMCAHHO-
IO YeJIOBEKOM TeKCTa. JleTeKTOphI, ClIoCOOHbIE OTIMYHUTD TEKCT, CO3/IaHHBI aBTOMATUIECKHU, OT HAIIM-
CAHHOT'O Y€JIOBEKOM TEKCTa IMO3BOJIAIOT IIPEJOTBPATUTDH 3J'IOyHOTpe6J'IeHI/Ie CreHEpUPOBAHHBIMU TEKCTa-
mu. B 370l crarhe Mbl onuckiBaeM Haie pertenue fjs 3agad DIALOG-22 RuATD o obHapy:KeHuto
CPeHEePUPOBAHHOIO TEKCTA U KJIACCU(PUKAIIUU C TTOMOIIBIO KAKOM MOAEN ObLI CreHepUPOBaH TEKCT. MbI
3aHssn 1-e MecTo B 3ajade OGuHapHOM Kiaccudukanyum ¢ orneHkoit rounocru 0,829 B wacrHoM Habope
TECTOB U 4-€ MeCTO B 3aj[ade MYJIbTHKJIACCOBOHN KitaccupuKarmu ¢ oreHkoit Tounoctu 0,628 B TecTto-
BoM Habope. Haite pertenne siBiisiercst ancambiiem 1006y YeHHBIX MOJIeJIeil, OCHOBAHHBIX HA MEXaHHU3Me
BHUMAHHUA.

Kurouessie cinoBa: CreHeprupoBaHHbIE TEKCTHI, KJIACCU(DUKAIINS TEKCTOB, aHCAMOJIEBbIE METO/IBI, 3a-
Jlava MHOTOKJIACCOBON KJTACCU(DUKAIIAN

1 Introduction

As the language neural nets got better at generating texts, it’s getting harder and harder to distinguish
the human-written text from generated one. So manual detection of these texts got impossible. For that
reason, it’s desirable to build a system that can automatically detect generated text.

The proposed system will use various features extracted from the text such as length, punctuation,
word choice etc. To determine whether the text is human-generated or not. The accuracy of this system
can be improved by using machine learning algorithms which will learn how humans generate texts and
then use those features for detection purpose.

There are many ways to build such a system, but probably the most reliable one is based on machine
learning algorithms. These algorithms can be trained on a large number of examples - both human-
generated and computer-generated texts. After being trained, they should be able to identify which texts
are computer-generated with high accuracy.

This approach already works in other areas, such as spam detection. Some early experiments have
shown promising results and indicate that this approach works well for the detection of the generated
text.

The DIALOG-22 shared task of RuATD 2022 had 2 tracks for binary classification and multiclass
classification. In this report, we will describe the data, how we handled it, the models we used, and the
ensembling technique.

! github.com/maloyan/ruatd
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2 Task Definition

For the binary classification task Fp;pqry, We frame the generated text detection problem as follows:
given a piece of text X, label it as either human-written or machine-generated ypinary = {H,M}.

Fbinary X = Ybinary

For the multiclass classification task F},,,itic1ass, W€ set up the problem as follows: given a piece of
text X, label it as one of the 14 classes that represent deep neural models

Ymulticlass = {M2M—100, Human, OPUS—MT, M —BART50, ruGPT3—Medium,
ruGPT3—Small, mMT5—Large, ruGPT3—Large, rulb5— Base— Multitask,
mT'5—Small, ruT5—Base,ruGPT2—Large, M—BART, ruT5—Large}

Fruticlass © X — Ymulticlass
3 Datasets

Provided datasets offer the train and test splits. The part of the set was annotated automatically by differ-
ent generative models. Various language models were fine-tuned on different tasks: machine translation,
paraphrasing, summarization, simplification, and unconditional text generation - are used to generate
texts. The texts written by a human were collected from open sources from different domains. (rua, a),
(rua, b).

Text Class

OB6ycTpoiicTBO TPOTYapOB, MOCTOBBIX (B TOM YHCJI€ TPOTYAPHON IJTUTKOI).

Munctpoit 0603HAYMT CIIOCOOBI CHIKEHUS YHEPTOEMKOCTUA POCCUICKON SKOHOMUKH.

B komnre 1873 rosa BoOeHHBIN CyJ1 BBIHEC pelierue 1o jiey Ppanrnncka AXusisl Baseitn.
yBeJIMYEHNE TPABOBOI TPAMOTHOCTH U Pa3BUTHE MPABOCO3HAHUS T'DAXKJIaH.

o2 E

Table 1: Example of the binary classification data.

Text Class
[Ipouna aprobuorpaduto Kayrckoro, Omecca, 1905. Human
Ber me moxkere ObITH B 1teun u B myulin. M-BARTS50
Bropas momnbiTka npuBesia K TOMY Ke pe3yIbTaTy. OPUS-MT
CKOJIbKO yYEeHUKOB B BallleM KJjiacce? M2M-100

Table 2: Example of the multiclass classification data.

4 Related Works

In this section, we will discuss various methods for detecting machine-generated texts.

Over the past years, many approaches appeared for generated text detection. The latest works are
usually based on using transformer-based models. Either fine-tuning the proposed task or using probab-
ilities distribution to make decision-based on them (Ippolito et al., 2019). Here we list some examples of
different methods:

* First, we calculate the mean likelihood over all machine-generated sequences, then the mean of
human-written ones. If the likelihood according to some language model is closer to the machine-
generated mean likelihood, then we consider it as generated text (Solaiman et al., 2019);

* In GLTR (Gehrmann et al., 2019) described a method using a language model to compute the
probability distribution of the next word given the text sequence. For each sequence position, we
get the likelihood of the ground-truth next word within this list. Then these ranks are displayed on
a histogram. Based on the distribution of bins, we can decide if this text is generated or not.
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* Bert fine-tuning on the classification task. Having a label of text if it’s machine-generated or not,
we can fine-tune the language model to predict (Solaiman et al., 2019)

* Also, there is possible to use human-machine collaboration. Real or Fake Tool provides a game-like
interface for humans to decide at what point the text begins to be written by a computer (Dugan et
al., 2020).

More approaches are described in the survey (Jawahar et al., 2020).

S Experiment Setup

In this section, we present the experiment configurations we use to solve binary and multiclass tasks.

5.1 Data preproccessing

We decided not to perform any preprocessing of the text itself. Regarding the data split:
* Binary classification. We concatenated the train set with the validation set. This new concatenated
dataset gave us an option to perform a 5-fold cross-validation;
* Multiclass classification. We took the data as is without changing anything.

5.2 Models

All models we used for fine-tuning we got from transformers library (Wolf et al., 2020). Here we will
describe these models:

* sberbank-ai/sbert_large_nlu_ru(hab, 2020), sberbank-ai/ruBert-large, DeepPavlov/rubert-
base-cased are BERT models (Devlin et al., 2018). Sber-ai models were fine-tuned on a closed
dataset collected by their research group (sbe, ). DeepPavlov’s RuUBERT was fine-tuned on the
Russian part of Wikipedia and news data.

 IlyaGusev/mbart_ru_sum_gazeta is a mBART model fine-tuned on the dataset for summarization
of Russian news(Gusev, 2020). The original MBart model was pretrained on large-scale monolin-
gual corpora in many languages using the BART objective. mBART is one of the first methods for
pre-training a complete sequence-to-sequence model by denoising full texts in multiple languages,
while previous approaches have focused only on the encoder, decoder, or reconstructing parts of the
text (Liu et al., 2020).

* MoritzLaurer/mDeBERTa-v3-base-mnli-xnli (He et al., 2021) This multilingual model is suitable
for multilingual zero-shot classification. The original model was pre-trained by Microsoft on the
CC100 multilingual dataset (Wenzek et al., 2020).

This model was fine-tuned on the XNLI development dataset and the MNLI train dataset. The XNLI
development set consists of translated texts for each of the 15 languages (Conneau et al., 2018).

* DeepPavlov/xlm-roberta-large-en-ru-mnli is an XLM-RoBERTa model (Conneau et al., 2019)

which was fine-tuned on the english-russian part of the MNLI (Williams et al., 2017) dataset.

5.3 Binary classification (with ensembling technique)

Five chosen models were used in the experiement: sberbank-ai/sbert large_nlu_ru, sberbank-
ai/ruBert-large, IlyaGusev/mbart_ru_sum_gazeta , MoritzLaurer/mDeBERTa-v3-base-mnli-xnli,
DeepPavlov/xlm-roberta-large-en-ru-mnli
Let’s describe steps for training each of these models:
1. We split our training dataset into non-overlapping 5-folds and performed cross-validation (Figure
1);
2. for each validation fold we predicted the target and as a result, we got out-of-fold predictions for
training data;
3. for the test set, we predicted the target from every 5 models from cross-validation and averaged the
result which is marked with red;
As a meta-model, we choose Logistic Regression, which was trained on out-of-fold predictions. Then
we predict the final results for the test set.
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Figure 1: Ensembling scheme
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For the multiclass

Multiclass classification

classification we chose these models:

DeepPavlov/rubert-base-cased,

DeepPavlov/xlm-roberta-large-en-ru, IlyaGusev/mbart_ru_sum_gazeta. We fine-tune these models
without cross-validation only on provided train set.

6 Results

Table 3 shows each model accuracy score on binary classification task. The multiclass classification
accuracy is shown in Table 4. On both tasks, the best performing single model was DeepPavlov/xIlm-
roberta-large-en-ru-mnli. We managed to ensemble models in the binary task, so the ensemble of

models showed the best accuracy.

Model name Accuracy

sberbank-ai/sbert_large_nlu_ru 0.79986 +0.003
sberbank-ai/ruBert-large 0.80154 +0.002
IlyaGusev/mbart_ru_sum_gazeta 0.80566 +0.001
MoritzLaurer/mDeBERTa-v3-base-mnli-xnli | 0.80710 +0.001
DeepPavlov/xlm-roberta-large-en-ru-mnli | 0.81708 + 0.002
Ensemble 0.82995>

Table 3: Results for binary classification for different models

Model name Accuracy(validation) | Accuracy(kaggle public/private)
IlyaGusev/mbart_ru_sum_gazeta 0.6142 0.61459/0.61092
DeepPavlov/rubert-base-cased. 0.6045 0.60433/0.60472
DeepPavlov/xlm-roberta-large-en-ru-mnli. 0.6242 0.62856/0.62644

Table 4: Results for multiclass classification for different models
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7 Conclusion

In this paper, we described our pipeline for the DIALOG-22 RuATD challenge. Our solution achieved 1st
place in binary classification using ensembling techniques and 4th place for the multiclass classification
task using only a single model. However, the proposed solution requires a lot of computational power,
so it cannot be used in real-time systems to detect generated texts. But it gives us an understanding that
we still need to upgrade methods to distinguish generated texts from human-written ones.
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