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Abstract
There are multiple morphologically annotated corpora of Russian available. They have different tagsets and

annotation guidelines, which makes them difficult to use together. We proposed a neural morphological tagger for
Russian based on multitask learning technique which is able to predict morphological tags of words for different
tagsets. We evaluated our model on various corpora and showed that utilising multiple corpora without merging
them not only improves tagging performance but allows for scalable indirect conversion between multiple tagsets
in all directions. Furthermore, we also showed that treating each corpus separately is more efficient than merging
the corpora even if they share the same tagset.
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Аннотация
Для русского языка доступно множество аннотированных корпусов, снабженных морфоло-

гической разметкой. Различия между их морфологическими стандартами и схемами аннотации
усложняют их совместное использование. Мы разработали модель морфологического анализа-
тора для русского языка на основе нейронных сетей и многозадачного обучения. Модель поз-
воляет снабжать слова морфологической разметкой для разных морфологических стандартов.
Для оценки качества мы использовали ряд корпусов и показали, что использование нескольких
корпусов без их слияния не только улучшает качество разметки, но и позволяет косвенно ис-
пользовать модель для ковертации между несколькими морфологическими стандартами во все
стороны, причем модель легко масштабируется на большее число стандартов. Кроме того, мы
также показали, что использование каждого корпуса как отдельную единицу более эффективно,
чем слияние корпусов, даже тогда, когда корпусы имеют общий морфологический стандарт.

Ключевые слова: морфологический анализ, морфологический стандарт, конвертация, много-
задачное обучение

1 Introduction

Morphologically annotated corpora are valuable sources of data for linguistic research and natural lan-
guage processing (NLP) tasks like morphological tagging and parsing. Such a corpus provides each word
with a set of values of morphological categories1 such as part-of-speech (POS), case or gender.

In the case of the Russian language, many corpora with morphological annotation exist. However,
each corpus often has its own unique tagset (Hana and Feldman, 2010; Sharoff et al., 2008, to name a

1Throughout the paper we will refer to each unique set of morphological features assigned to a word as a morphological
tag.

1

Computational Linguistics and Intellectual Technologies:  
Proceedings of the International Conference “Dialogue 2022”

Moscow, June 15–18, 2022



few) and converting between them without mistakes and information loss is a challenging task. One clear
example is morphological analysis contest MorphoRuEval-2017 (Sorokin et al., 2017). The organisers
provided four different annotated corpora and automatically converted morphological tags to the Univer-
sal Dependencies (UD) v2.0 format (Nivre et al., 2020). But most participants ended up using only one
dataset because adding others did not improve the performance of their models, especially models based
on deep learning methods.

From a linguistic perspective, merging different corpora allows linguists to widen their research scope.
From a statistical perspective, including machine learning and deep learning, more data would allow
better performance of morphological processing tasks because it helps with the data sparseness problem.

Tagset conversion is challenging for multiple reasons:
1. Lack of parallel data. Russian corpora have little common texts, which makes it hard to create

conversion rules, since each word’s tag depends on context. Training a supervised conversion model
is also not possible under these circumstances.

2. Inter-annotator agreement. Even if two corpora share the same tagset, they might follow different
annotation guidelines because some language phenomena are debatable. These differences might
be crucial in terms of performance for the neural taggers. This problem to a lesser extent occurs
within a single corpus when different annotators make different decisions because of the flaws in
the guideline (Plank et al., 2014). Another challenge occurs when inter-annotator agreement score
is high but all annotators make the same error in some cases (Bočarov et al., 2013).

3. Lack of annotated data. Some corpora are small and not representative enough to make plausible
conversion results without the use of additional resources.

There are many approaches to this problem. We can divide them into two groups: direct and indirect.
Direct approaches are mainly rule-based: for a given word in a source corpus, there is a rule to convert
its tag to the target corpus format based on the word’s context (including annotation). Although some
automated tools exist to provide multi-corpora tagset conversion2, it is hard to cover all possible patterns
using rules, and it requires manual correction, which is time-consuming. For example, in the process of
converting syntactically tagged Russian text corpus SynTagRus (Inšakova et al., 2019) to the UD format
(Droganova and Zeman, 2016) some sentences were omitted due to differences in the guidelines. Some-
what similar is the task of providing a unified tagset from a number of corpora’s tagsets for comparison
purposes (standardisation). Such tagsets usually lack some morphological features because of conversion
difficulties (Ljaševskaja et al., 2010; Lyashevskaya et al., 2017).

Indirect approaches are usually based on statistical morphological taggers. Such taggers, trained on
the target corpus, intrinsically utilise source corpus annotation. These approaches are applicable to both
tasks: morphological tagging and tagset conversion. One such approach (and some variations) aimed at
tagset conversion trains a tagger to produce the so-called bundled tags (Li et al., 2015). Let 𝑇𝑇 𝑠𝑠 and 𝑇𝑇 𝑡𝑡

be the set of all possible tags in source and target corpus, respectively. Then the set of all bundled tags
is a Cartesian product 𝑇𝑇 𝑠𝑠 × 𝑇𝑇 𝑡𝑡. During training, instead of predicting a correct label 𝑡𝑡𝑡𝑡𝑖𝑖 ∈ 𝑇𝑇 𝑡𝑡 the model
predicts all labels in the set {𝑡𝑡𝑡𝑡𝑖𝑖} × 𝑇𝑇 𝑠𝑠 thus making the labels ambiguous. That allows to predict labels
from both tagsets at the same time. The authors tested the approach by training a POS tagger on two
Chinese corpora. This approach is practically inapplicable to Russian because there are hundreds and
thousands of different morphological tags possible in a given corpus compared to a few dozens of POS
tags in Chinese, which keeps the Cartesian product small.

As for the Russian language, there is one indirect approach in the literature to our knowledge, and
it is based on transfer learning technique (Andrianov and Mayorov, 2017). Namely, the authors trained
multiple neural taggers (one tagger per source corpus in the case of multiple source corpora) and used
their intermediate layers’ outputs as inputs to the main tagger trained on the target corpus.

All those indirect approaches have one essential drawback: scalability. We often need to be able to
make the conversion in both directions, and the mentioned approaches are not easy to apply when the
number of the target corpora is more than one.

The primary objective of this paper is to show how unrelated Russian morphological corpora can
2See, for example, https://pypi.org/project/russian-tagsets/
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benefit each other on the morphological tagging task in a scalable manner. We train a neural morpho-
logical tagger in a multitask learning setting, treating each corpus’ annotation separately but sharing the
intermediate text representation. We do not use pretrained word embeddings or any other external data
besides the corpora. We evaluate our model on a set of Russian corpora and also on the data provided in
the MorphoRuEval-2017 contest for comparison. We show that utilising multiple corpora in a multitask
setting improves tagging performance on each tagset, but it depends on the size of the corpus. We also
show that treating multiple corpora sharing the same tagset separately instead of merging them leads to
a better tagging performance.

The paper is organised as follows. Section 2 describes the proposed neural tagger model. Section 3
provides experimental results, which we discuss in section 4. Section 5 concludes the paper.

2 Methods

Our model receives a tokenised sentence in the form of word3 sequence {𝑤𝑤1, 𝑤𝑤2, . . . , 𝑤𝑤𝑛𝑛} as input
features, and predicts a sequence of morphological tags {𝑡𝑡𝑗𝑗1, 𝑡𝑡

𝑗𝑗
2, . . . , 𝑡𝑡

𝑗𝑗
𝑛𝑛} for each tagset 𝑇𝑇 𝑗𝑗 . We provide

detailed description of the model in the next sections.

2.1 Model architecture
The model has three basic blocks:

1. word embeddings
2. encoder layer
3. output layer.
We used GRU-based (Cho et al., 2014) character-level word embeddings, proven to be effective in

various NLP tasks, including morphological tagging (Heigold et al., 2017; Lukovnikov et al., 2017).
Each word 𝑤𝑤𝑖𝑖 is represented as a sequence of its characters {𝑐𝑐1, 𝑐𝑐2, . . . , 𝑐𝑐𝑘𝑘}. Each character is represented
as a one-hot encoded vector over a predefined vocabulary 𝑉𝑉 𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and passed to a character embedding
layer:

𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑖𝑖 = 𝑊𝑊 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 · 𝑜𝑜𝑜𝑜𝑜𝑜_ℎ𝑜𝑜𝑜𝑜(𝑐𝑐𝑖𝑖),

where 𝑊𝑊 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∈ R𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠×|𝑉𝑉 𝑐𝑐𝑐𝑐𝑐𝑐𝑐|. All word’s character embeddings are then passed to a
unidirectional GRU layer:

𝑟𝑟𝑖𝑖 = 𝜎𝜎(𝑊𝑊𝑟𝑟𝑐𝑐
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑖𝑖 + 𝑏𝑏𝑟𝑟 + 𝑈𝑈𝑟𝑟ℎ

𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖−1 + 𝑢𝑢𝑟𝑟),

𝑧𝑧𝑖𝑖 = 𝜎𝜎(𝑊𝑊𝑧𝑧𝑐𝑐
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑖𝑖 + 𝑏𝑏𝑧𝑧 + 𝑈𝑈𝑧𝑧ℎ

𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖−1 + 𝑢𝑢𝑧𝑧),

𝑛𝑛𝑖𝑖 = tanh(𝑊𝑊𝑛𝑛𝑐𝑐
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑖𝑖 + 𝑏𝑏𝑛𝑛 + 𝑟𝑟𝑖𝑖 ⊙ (𝑈𝑈𝑛𝑛ℎ

𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖−1 + 𝑢𝑢𝑛𝑛)),

ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 = (1− 𝑧𝑧𝑖𝑖)⊙ 𝑛𝑛𝑖𝑖 + 𝑧𝑧𝑖𝑖 ⊙ ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖−1 ,

ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐0 = 0,

where 𝜎𝜎 is the sigmoid function, 𝑊𝑊𝑟𝑟, 𝑈𝑈𝑟𝑟,𝑊𝑊𝑧𝑧, 𝑈𝑈𝑧𝑧,𝑊𝑊𝑛𝑛, 𝑈𝑈𝑛𝑛 ∈ R𝑐𝑐𝑐𝑐𝑐𝑐𝑐_ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠×𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and
𝑏𝑏𝑟𝑟, 𝑢𝑢𝑟𝑟, 𝑏𝑏𝑧𝑧, 𝑢𝑢𝑧𝑧, 𝑏𝑏𝑛𝑛, 𝑢𝑢𝑛𝑛 are the bias vectors, respectively. The final hidden state of the character sequence is
the word embedding of the word 𝑤𝑤𝑖𝑖:

𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑖𝑖 = ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘

As the encoder layer, we chose the Transformer model’s encoder. Not only this model showed prom-
ising results in various sequence tagging tasks (Devlin et al., 2019) because of its receptive field, but
also its architecture allows easier interpretation through visualisation compared to other encoder models
including recurrent neural networks. We did not make any changes to the architecture besides hyper-
parameter tuning (we also did not use the decoder layer of the Transformer) so we refer the readers to
the original paper (Vaswani et al., 2017) for more details. The output of the encoder layer is

3We treated punctuation marks as words.
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𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒
𝑖𝑖 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑖𝑖 ),

where 𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒
𝑖𝑖 ∈ R𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚×1.

We made |𝑇𝑇 | output layers where |𝑇𝑇 | is the number of tagsets (corpora). Each output layer projects
each encoder’s output to a probability distribution over a predefined set of tags:

𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜
𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑊𝑊 𝑗𝑗

𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤
𝑒𝑒𝑒𝑒𝑒𝑒
𝑖𝑖 + 𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜),

where 𝑊𝑊 𝑗𝑗
𝑜𝑜𝑜𝑜𝑜𝑜 ∈ R|𝑇𝑇 𝑗𝑗 |×𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑗𝑗 = 1, 2, . . . , |𝑇𝑇 | and 𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜 is the bias vector. The predicted morphological

tag in a given tagset for a given word is the tag with the highest probability. See Figure 1 for the graphical
representation of the model.

Н е ф т я н ы е к а ч е л и

Нефтяные качели

GRU GRU GRU GRU GRU GRU GRU GRU GRU GRU GRU GRU GRU GRU

Transformer encoder 

Output  
layer 1

Output  
layer |T| 

Output  
layer 1

Output  
layer |T| 

А МН ИМ A pl nom plen S pl nomS МН МУЖ
ИМ НЕОД

Figure 1: Graphical representation of the proposed neural tagger for the sentence Neftjanye kačeli.

2.2 Model hyperparameters
Table 1 shows the hyperparameters we used in our model. We fine-tuned these hyperparameters once
and did not change them between the experiments.

Model part Hyperparameter Value
Word embeddings |𝑉𝑉 𝑐𝑐𝑐𝑐𝑐𝑐𝑐| 95

𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 32
𝑐𝑐𝑐𝑐𝑐𝑐𝑐_ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 128

Encoder layer 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 128
𝑑𝑑𝑓𝑓𝑓𝑓 512
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 0.1

Output layer |𝑇𝑇 𝑗𝑗 | Depends on the corpus

Table 1: Hyperparameters of the proposed model. We did not mention some hyperparameters in the
section 2.1 and for them, we either use the notation proposed in the paper (Vaswani et al., 2017) or not
mention them at all if we did not make any changes.
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We used the Adam optimiser with weight decay (Loshchilov and Hutter, 2019). Its hyperparamet-
ers as well as learning rate function are almost identical to (Vaswani et al., 2017) except we chose
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 to be 10% of the total number of steps.

One problem with our model is the training process. We used cross-entropy as the cost function, but
each task (each output layer) has its own cost function and simply adding them up may affect performance
since different corpora have different sizes. To overcome this issue, we adopted the approach proposed
in (Cipolla et al., 2018). Namely, before adding up, it weighs each cost function by considering the
homoscedastic uncertainty of each task.

3 Experiments

We chose eight different corpora to evaluate our model. We divided them into two parts to conduct two
different sets of experiments. The first part consists of the manually (re)annotated corpora:

1. Syntactically tagged Russian text corpus SynTagRus (Inšakova et al., 2019). It is a subcorpus of the
National Corpus of the Russian language. SynTagRus is supplied with several types of annotation,
including fully disambiguated and manually corrected morphological and syntactic annotation.

2. Disambiguated subcorpus of the National Corpus of the Russian language (RNC) (Plungjan and
Sičinava, 2004). This subcorpus was manually disambiguated, and it provides full morphological
annotation.

3. Russian Universal Dependencies Treebank annotated and converted by Google (GSD)4. GSD is a
small treebank automatically annotated and converted into UD format. The current version was
manually reannotated and provides full morphological and syntactic annotation.

4. Russian Universal Dependencies Treebank based on data samples extracted from Taiga Corpus and
MorphoRuEval-2017 and GramEval-2020 shared tasks collections (Taiga)5. It includes manually
corrected morphological and syntactic annotation.

The second part consists of the corpora provided by the organisers of the MorphoRuEval-2017 contest
(Sorokin et al., 2017):

1. UD SynTagRus. It is the SynTagRus corpus automatically converted into UD format.
2. RNC Open. It is a smaller part of the RNC corpus mentioned above being automatically converted

into UD format.
3. GICR. It is a morphologically disambiguated part of the General Internet Corpus of Russian (Piper-

ski et al., 2013). It was automatically annotated and then converted into UD format.
4. OpenCorpora. It is a morphologically disambiguated part of the OpenCorpora project6. It was

manually annotated and then automatically converted into UD format.
We tackled some corpora differently from others. The first difference is how we split the corpora into

training, development and test sets. GSD and Taiga corpora have predefined splits, so we left it as is. For
SynTagRus and RNC, we used their intersection as test sets and split the remaining sentences randomly
so that 10% of the sentences form a development set. For the remaining four corpora, the organisers
of the MorphoRuEval-2017 contest provided a shared test set, so we split these corpora into train and
development sets with the ratio 9:1, respectively.

The second difference is how we collected grammemes. We used the tagset descriptions provided with
SynTagRus, RNC, GSD and Taiga and then omitted all non-inflectional features. For the remaining four
corpora, we used only those grammemes which were counted at the testing phase of the MorphoRuEval-
2017 contest.

To collect the tagset of a corpus, we followed the following algorithm:
1. Collect each word’s tag from a corpus.
2. Exclude unused grammemes from each tag.
3. Remove duplicate grammemes from each tag (in case of annotation errors).

4https://universaldependencies.org/treebanks/ru_gsd/index.html
5https://universaldependencies.org/treebanks/ru_taiga/index.html
6http://opencorpora.org/
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4. For SynTagRus and RNC: replace each tag in which any grammatical category has two or more
different values with a special "erroneous" tag.

5. Sort grammemes in each tag.
6. Return unique preprocessed tags.

See Table 2 for the detailed statistics of each corpus.

Corpus name #Sentences #Words #Grammemes #Tags (|𝑇𝑇 𝑗𝑗 |)
SynTagRus 97138 1685273 45 470

RNC 519726 7961784 62 1285
GSD 5030 98000 52 652
Taiga 17871 197001 54 683

UD SynTagRus 50116 931075 41 237
RNC Open 98892 1344875 41 492

GICR 83148 1086148 41 292
OpenCorpora 38508 457583 41 366

Table 2: Corpora statistics. We treat punctuation marks as words and POS features as grammemes.

We conducted two series of experiments. The first series concerns 4 corpora: SynTagRus, RNC, GSD
and Taiga. They have different sizes, tagsets and annotation guidelines. We trained 15 different neural
taggers using different subsets of corpora (one tagger for each of the 4 corpora, one tagger for each of
the 6 pairs, one tagger for each of the 4 triples and one tagger trained on all 4 corpora) and compared
their performance.

The second series of experiments concerns the remaining 4 corpora: UD SynTagRus, RNC Open,
GICR and OpenCorpora. These corpora share the same tagset, they are similar in size, but they follow
different annotation guideline. We trained and evaluated 15 different neural taggers in the same way as
in the first series, but because the tagsets are the same, we were able to train another combined tagger
using a single merged corpus which consists of all 4 corpora. For that final experiment, we also merged
the corpora’s tagsets.

Each tagger has the same model architecture described in section 2.1. We trained each tagger for
10 epochs and chose the final parameters based on the best development set performance. We did not
use fixed mini-batch size because different sentences vary in size dramatically. Instead, each mini-batch
contained some sentences of the same length from the same corpus with the overall limit of 2048 words
per mini-batch. Since each corpus has morphological annotation for only one output layer, we froze
the weights of other output layers during training, depending on to which corpus the sentences from the
current mini-batch belong.

4 Results

To compare the taggers, we used per-word and per-sentence accuracy. The word is tagged correctly if
the tag predicted by tagger is the same as in the gold standard (it means that the tags’ grammemes also
match). The sentence is tagged correctly if each word’s tag match with the corresponding tag in the gold
standard.

Figure 2 illustrates the per-word tagging accuracy on the test sets for each tagger from the first series
of experiments. We arranged the models in ascending order of their joint corpora size. Each line corres-
ponds to the respective output layer, so different lines also correspond to different test sets.

From the results, it is clear that low-resource corpora always benefit from multitask learning scenario
when trained jointly with the larger corpora, despite their tagsets and annotation guidelines. The opposite
does not hold. However, Taiga and GSD generally benefit from each other, as well as SynTagRus and
RNC. We speculate that this might be due to two reasons. The first reason is that these two pairs have
comparable corpus size. The second reason is that GSD and Taiga have almost identical tagsets.

Another finding is that despite the single-task learning models show a clear trend “more data — better
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Figure 2: Per-word tagging accuracy (%) on the test sets for each model from the first series of experi-
ments. Each line shows accuracy with respect to its output layer. The models are arranged in ascending
order of their joint corpora size.

performance”, the SynTagRus corpus shows the best overall performance. We believe that this is because
SynTagRus has relatively small tagset, and it suffers less from the data sparseness problem.

One limitation of our comparison is the fact that we fine-tuned the model architecture’s hyperparamet-
ers using the SynTagRus+RNC pair, which might be the reason why these two corpora benefit from each
other. At the same time, the best performance for each test set provide the largest or the second-largest
model in terms of joint corpora size. This contrasts with the paper (Mishra, 2019): the authors utilised a
similar multitask learning approach to do POS tagging of English tweets, but did not improve the results
for all corpora compared to a single-task learning approach.

Figure 3 illustrates the performance of the taggers from the second series of the experiments in the
same manner as in Figure 2. This chart has two key differences from the previous one. The first difference
is that the performance of the model for a given tagset does not depend on the tagset’s corpus size at all:
the largest corpus is RNC Open, and it performs poorly compared to the UD SynTagRus and GICR
corpora. This appears to be the case of annotation guidelines differences. Since all these models share
the same test set, the results show which corpus’ annotation guideline is closer to the test set’s one. This
agrees with the fact that according to (Sorokin et al., 2017) the test set is the GICR subcorpus.

The second difference is the fact that here each corpus benefits from all others. This does not contradict
the previous findings because all these corpora have comparable size. One exception which is visible on
the UD SynTagRus line has already been explained: using data from the GICR corpus leads to better
performance.

The best performance of the second series of experiments achieved by the largest model with the GICR
tagset prediction layer. We compared our best model with the models provided by the participants of the
MorphoRuEval-2017 contest in a closed setup, since we did not use any extra resources. We also added
our combined model mentioned in section 3 into comparison. The results are shown in Table 3.

Our best model performance is comparable to the performance of the contest participants’ models,
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Figure 3: Per-word tagging accuracy (%) on the test sets for each model from the second series of
experiments (excluding the combined model). Each line shows accuracy with respect to its output layer.
The models are arranged in ascending order of their joint corpus size.

Model name Per-word accuracy, % Per-sentence accuracy, %
OpenCorpora+UD SynTagRus+

+GICR+RNC Open
(GICR tagset output)

93.88 62.58

Combined 91.25 52.65
MSU-1 93.39 65.29

IQUMEN 93.08 62.71
Sagteam 92.64 58.40
Aspect 92.57 61.01

Table 3: Comparison of our models with the top 4 models provided by the participants of the
MorphoRuEval-2017 contest on the test set in a closed setup.
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although we did not use any dictionaries or hand-crafted features. We achieved the best per-word accur-
acy and third best per-sentence accuracy. The comparison with the combined model provides supporting
evidence that even corpora with a shared tagset may perform poorly when merged together because of
the differences in the annotation guidelines.

5 Conclusion

In this paper, we proposed a multitask learning based approach to Russian neural morphological tag-
ging, which effectively utilises multiple corpora with different tagsets or annotation guidelines. To our
knowledge, we for the first time applied the multitask learning technique in terms of predicting tags from
different tagsets to the task of morphological tagging of Russian texts.

We showed that the effectiveness of morphological tagging depends on corpora size, tagset size and
annotation consistency. Our findings help to better understand how tagset conversion affects performance
of NLP tasks.

Our model is able to indirectly make tagset conversion in a scalable way taking into account differences
in the morphological annotation guidelines, but full morphologically annotated corpora conversion does
not end there. Such corpora often have other differences, including tokenisation and lemmatisation
scheme. This may constitute the object of future studies.
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