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Abstract

In this paper, we introduce a novel approach to estimating the cognitive complexity of a text at different levels
of language: phonetic, morphemic, lexical, and syntactic. The proposed method detects tokens with an abnormal
frequency of complexity scores. The frequencies are taken from the empirical distributions calculated over the
reference corpus of texts. We use the Russian Wikipedia for this purpose. Ensemble models are combined from
individual models from different language levels. We created datasets of pairs of text fragments taken from social
studies textbooks of different grades to train the ensembles. Empirical evidence shows that the proposed approach
outperforms existing methods, such as readability indices, in estimating text complexity in terms of accuracy. The
purpose of this study is to create one of the important components of the system of recommendation of scientific
and educational content.
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AmnHoTamusa

B nannoit paboTe OmmMCHIBAETCS MOAXOJ K OIEHWBAHWIO KOTHUTWBHOM CJIOYKHOCTH TEKCTA HA Pas3-
HBIX YPOBHSIX $I3bIKa: Ha (POHETHIECKOM, MOP(MEMHOM, JIEKCUIECKOM U CHHTaKCUYeCKOM. B ero ocuose
JIEXKWUT OIpeJie/IeHie TOKEHOB C AHOMAJbHON JaCTOTOM WX CJIOXKHOCTeH. JacTOThI OmpemessroTcs 1o
SMIIMPUYIECKUM PACIIPEJIEJIEHNsIM, IIOCTPOEHHBIM Ha OCHOBE PedEepEeHTHOr0 KOPILyCa TEeKCTOB, B Kade-
CTB€ KOTOPOTO HCIOJIb3YeTCsT PYCCKOsi3bIuHast Bukumneausi. VI3 oTmesbHBIX Mojiesiell ¢ pa3HbIX YPOBHEH
sI3bIKA CO3JAIOTCS arperupoBaHuble Mozesn. Jlns ux obydeHust Mbl CO3/iaJ BbIOOpKHU map dparmMeH-
TOB TEKCTOB, B3STHIX U3 yYEOHUKOB MO ODOIECTBO3HAHUIO PA3HBIX yUIeOHBIX KyiaccoB. [IpoBenéunbie B
paboTe 9KCIEPUMEHTHI [TOKA3bIBAIOT Y IIPEJIAraeMOro 10/1X0/1a 60J1ee BBICOKYIO TOYHOCTh PAHXKHPOBa-
HUSI TEKCTOB TI0 CJIOXKHOCTH B CPaBHEHWU C WHEKcaMu yaobountaemoctu. llesibio mpoBenennst JaHHOTO
WCCJIe/IOBAHMS SIBJISIETCSI CO3J[AHUE OHOI'O M3 Ba>KHBIX KOMIIOHEHTOB CHCTEMbI DEKOMEHIAIN Hay IHO-
06pa30BaTEILHOTO KOHTEHTA.

KirodeBsie ciioBa: KOTHUTHBHAS CJIOKHOCTH TEKCTOB, YPOBHU si3bIKa, aHcaMbJieBoe 00yueHne
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1 Introduction

Many readability indices have been developed for the task of estimating the complexity of the text. Most
of them are a linear combination of some trivial statistical parameters of the text based on the number of
letters, syllables, words, and sentences. In this paper, we continue the research and improvement of the
generalised quantile-based approach to the estimation of the cognitive complexity of the text at different
levels of the language (phonetic, morphemic, lexical, and syntactic). The idea of such an approach was
first presented by Eremeev M.A. and Vorontsov K.V. in (Eremeev and Vorontsov, 2019). It is based on
the detection of tokens with an abnormal frequency of their complexity scores. We use the reference
corpus of texts, which is the Russian-language Wikipedia, to construct the empirical distributions for this
purpose. This paper is devoted to the study of the aggregation of individual quantile-based models in
order to take information from different levels of the language into account, and this is its novelty. We
train aggregated models on datasets of pairs of text fragments, which we created on the basis of social
studies textbooks of different educational grades. In this paper, we conduct experiments to compare the
accuracy of our models with adapted readability indices, including the comparison of accuracy over each
pair of educational grades. The analysis of the contribution of individual components to the aggregated
model (ablation study) and the analysis of the dependence of the ranking accuracy on the average length
of a text fragment in a dataset are also carried out. The experiments conducted in the paper demonstrate
that the proposed approach has a higher accuracy of ranking texts in terms of cognitive text complexity
compared to readability indices. The purpose of this study is to create one of the important components
of the system of recommendation of scientific and educational content.

2 Readability indices review

Historically linguists use readability indices for estimating text complexity of the educational literature.
Many of them were initially developed for the US education system and were therefore adapted for the
English language.

The automated readability index (ARI) was developed by R.J. Senter and E.A. Smith in 1967 (Senter
and Smith, 1967). It approximates a representation of the US grade level required to understand the
analysed text. For a document d written in English ARI has the following calculation formula:

C w
ARI(d) = 4.71 x i +0.5 x g~ 21.43,
where C'is the number of letters and digits, W is the number of words, and .S is the number of sentences
in the text of the document d.
Lisbarhetsindex (LIX) was developed by Swedish scientist Carl-Hugo Bjornsson in 1968 (Bjornsson,
1968). Index value monotonically increases with respect to text complexity. LIX does not take into
account the language in which the text is written and is calculated as follows:

A C
LIX(d) = 5 + 100 x 1
where A is the number of letters, B is the number of sentences, and C' is the number of words longer
than 6 letters in the text of the document d.
In 1969 G. Harry McLaughlin developed the Simple Measure of Gobbledygook (SMOG) (McLaugh-
lin, 1969). This readability index produces an approximate number of years of study needed to compre-
hend the text. SMOG is calculated for the document d written in English with the following formula:

SMOG(d) = 1.04301/ A x % +3.1291,

where A denotes the number of polysyllabic words (3 and more syllables in English), and B is the
number of sentences.
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Coleman-Liau index (CLI), developed in 1975 by Meri Coleman and T.L. Liau (Coleman and Liau,
1975), approximates a representation of the US grade level necessary to understand the given text. For
the document d written in English CLI has the following calculation formula:

CLI(d) = 0.0588 x L — 0.296 x S — 15.8,

where L denotes the average number of letters per 100 words, and S refers to the average number of
sentences per 100 words.

In 1948 Rudolf Flesch developed the most popular measure of text complexity — the Flesch reading-
ease score (FRES) (Flesch, 1948). The index value monotonically declines with respect to text complex-
ity. FRES is calculated for the document d written in English as follows:

FRES(d) = 206.835 — 1.015 x ASL — 84.6 x ASW,

where ASL is the average sentence length in words, and ASW is the average number of syllables per
word.

Flesch—Kincaid grade level (FKGL) was developed by J. Peter Kincaid in 1975 (Kincaid et al., 1975).
This readability index approximates a representation of the US grade level. FKGL has the following
formula for calculation for the document d written in English:

FKGL(d) = 0.39 x ASL + 11.8 x ASW — 15.59.

The Estonian linguist Juhan Tuldava proposed in 1975 his own readability index (Tuldava, 1975),
which we refer to in our article as the Tuldava index (TI). TI does not take the language of the text into
account and is calculated as follows:

TI(d) = ASW x lg(ASL).

In this paper, we estimate the complexity of Russian texts. Therefore, we use adapted versions of
indices for comparison with the proposed quantile-based approach.

Irina Oborneva made a significant contribution to the development of the readability formulae for texts
in Russian by adapting the FRES and FKGL indices in 2005 (Oborneva, 2005):

FRES,,(d) = 206.835 — 1.3 x ASL — 60.1 x ASW,
FKGLy(d) = 0.5 x ASL + 8.4 x ASW — 15.59.

Later, the results of the adaptation of the readability formulae for automated analysis of texts in Russian
were presented by Ivan Begtin in 2014 (Begtin, 2014). These implementations were collected in the
Python library ruTS by Sergey Shkarin in 2021 (Shkarin, 2021). We utilise this library to reproduce
baseline results for this paper. We have extended it by adding the Tuldava index and correcting the
wrong coefficients in the Coleman-Liau index. See the formulae for ARI,.,, SMOG,,, and CLI,,
readability indices adapted for the Russian language below (the variables that are not explained below
are the same as for the formulae for English):

C W
ARL,(d) = 6.26 x — +0.2 — —31.04.
Rl (d) = 6.26 x 1= +0.2805 x - — 31.0

/ 4.

where A denotes the number of polysyllabic words (4 and more syllables in Russian).
CLIy(d) = 0.055 x L — 0.35 x S — 20.33.

Text complexity estimates have many applications. For example, Arina Dmitrieva describes the meth-
ods of analysing legal documents in Russian based on readability indices (Dmitrieva, 2017). The FKGL
readability index was developed in order to compile the texts of instructions for the use of weapons or
technical means, and the SMOG index was used to study the text complexity of instructions for medi-
cines and preparations. Many indices are used to estimate the comprehensibility of textbooks offered to
students of different ages. The use of text complexity estimation can be helpful for predicting the time
spent processing regulations, documents, and educational literature.
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3 Generalised text complexity model

Let d be an arbitrary document of length n consisting of tokens 1, ..., x, from a fixed finite alphabet
Ay, where h denotes the level of the language: phonetic, morphemic, lexical or syntactic. In this paper,
we consider letters, syllables, words, or sentences (or structures describing a part of speech and the
syntactic function of words) as tokens, depending on the level of the language. Suppose that every
token x; of the document d has its own processing complexity c; caused by its context or by its internal
structure. Also assume that each token a € Aj, has its usual processing complexity, which is a result of
the language evolution within a historical and cultural environment. If the current processing complexity
of the token x; = a in the analysed text turns out to be abnormally high compared to the usual processing
complexity of token a, then we will assume that the token x; carries an excessive difficulty of perception.
The information about usual complexity of tokens can be retrieved from a reference collection denoted
by K, which is a large union of texts of medium complexity. In order to determine if the token z; €
d, x; = a is abnormally complex we need to construct an empirical distribution of complexity scores
¢; of every token Z; € K such that ; = a. The token x; is considered as abnormally complex if
its complexity score is greater than the y-quantile C.,(x;) of the constructed distribution for token (see
Figure 1).
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Figure 1: Histogram for empirical distribution of complexity scores and its y-quantile

In Figure 1 the red zone corresponds to an abnormally high complexity. The green zone corresponds
to a low complexity. The blue zone indicates the usual complexity of the token.

We shall call the nonlinear sum of weights w; of tokens with abnormal complexities the document
complexity score and denote it by S(d).

S(d) => wlle; > Cy ()], (1)
i=1

where | | is the Iverson bracket (i.e. [true] = 1, [false] = 0), p is a positive integer.

The weight w; is a non-negative value that does not decrease with increasing complexity ¢;. Complex-
ity ¢; is defined up to an arbitrary increasing function.

Table 1 shows several examples of possible weights.

w; Meaning of w;
1 number of complex tokens
1/n x 100% percentage of complex tokens
C; total complexity
ci/n mean complexity
ci — Cy () excessive complexity
(¢i —Cy(x;)) /n | mean excessive complexity

Table 1: Examples of weights w;
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4 Token complexity functions

4.1 Distance-based complexity function

Let r; be a distance from the previous occurrence of the token x; to its current occurrence in the text:

e Li—r;+1  Li—r;4+2 e Ti—2 Tj—1 Ty =aj...

T

ri = lréljll<11{7j —Jlzi =z}

In the first occurrence of the token a in the text, at the position ¢, the distance 7; is undefined. In that case
r; is redefined such that the sum of all distances r; for this token x; = a equals to the document length
n.

To obtain a frequency model of complexity as a special case of the generalised model, the parameters
¢c; are defined as some decreasing function of r;, for example:

Ci = =T 2

4.2 Counter-based complexity function

In the counter-based approach, as in the special case of the generalised approach, it is assumed that the
alphabet Aj, consists of a single token A;, = {a}, i.e. we distinguish not the tokens themselves, but only
their complexity. The complexity of tokens is determined by their linguistic properties, and each token
has exactly one possible complexity value. Thereby, just one empirical distribution of token complexities
is constructed over all tokens from the reference collection. In that case, C (x;) = C,,.

5 Considered models

In this section, we describe individual models at different levels of language in terms introduced when
considering a generalised model above, i.e. by specifying the alphabets of tokens and complexity func-
tions. The available means of morphological, lexical, and syntactic analysis can be used to form alphabets
of tokens and characteristics of their complexity.

5.1 Phonetic level

We consider individual letters as tokens here. For this type of the models we use the distance-based
approach. The name of the model implemented in that way is letter_dist_model.

5.2 Morphemic level

There are two possible ways to form tokens: either take the original syllables, or rearrange the letters in
them in alphabetical order so that the order of the letters is not taken into account. Therefore, we consider
two distance-based models, which we refer to as syllab_dist_model and syllabsort_dist_model.

5.3 Lexical level

The tokens here are individual words. For models at this level (except the lexical_len_model) we
consider different forms of one word to be equal and use the lemmatization of words as a preprocessing.

Distance-based model at this level is called lexical_dist_model.

Word length counter-based model considers the length of the word as its complexity score. To
implement such a model, we construct an empirical distribution of lengths of all words in the reference
collection. We refer to this model as lexical_len_model.

Counter-based model at lexical level is based on the assumption that the rarer a word is encountered
in the reference corpus, the more specific and difficult it is. In the experiments, the following complexity
function is used:

¢; = — count(x;), 3)

where count(z;) is the number of token z; occurences in the reference collection. We refer to this model
as lexical_cnt_model.
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5.4 Syntactic level

The tokens here are sentences or structures describing the part of speech and the syntactic function of
words in the sentence. In this paper, we use the UDPipe library to divide the text into sentences and
extract the syntactic dependencies and parts of speech (Straka and Strakova, 2017).

Counter-based model at this level uses the maximum length of the syntactic dependency in the sen-
tence as a complexity score of this sentence. We refer to this model as syntax_len_model.

Distance-based model considers a sentence as a set structures describing a part of speech and the
syntactic function of words in the sentence. Each such structure corresponds to one word. The word
itself is ignored, but information about its part of speech and syntactic role in the sentence is considered.
We refer to this model as syntaxpos_dist_model.

6 Experiments

6.1 Reference collection and datasets

We use the Russian Wikipedia (1.5 million articles) as a reference collection for our experiments. The
ruwiki-latest-pages-articles.xml.bz2 archive was processed by the WikiExtractor parser. After the ad-
ditional preprocessing it was translated into a format where each article corresponds to its own TXT
document.

As a dataset we use the sets of social studies textbooks, prepared in (Solovyev et al., 2018): textbooks
by L.N. Bogolyubov for 6, 7, 8, 9, 10, 10+, 11+ grades («+» denotes a version with in-depth study)
and textbooks by A.F. Nikitin for 5, 6, 7, 8, 9, 10, 11 grades. In this dataset, each document contains
randomly shuffled sentences from the textbook. In order to create a dataset for the training and validation
of models, we first combined the texts of the textbooks intended for the same grade and then cut them into
pieces of similar length consisting of whole sentences. Afterwards, the fragments of texts of different
grades were combined into pairs, where a piece of text from a textbook of a higher grade comes second:
D = {(d, d’) | d’ more complex than d)}. The complexity of the textbook is determined by its grade,
which should be a fairly reliable characteristic to estimate the cognitive complexity of the text, since
textbooks are created in accordance with educational standards.

Eight datasets with different number of pairs were prepared. They are available at this link. For this
purpose, the length of one text fragment varied (see Table 2). Each dataset consists of all possible pairs
in such a way that each text piece of one grade is compared with each text piece of each other grade.

Dataset | Number of | Average number
name pairs of text | of symbols in one
fragments text fragment
D1 1027 94100
D2 2532 59 850
D3 5001 42 650
D4 10 041 30 100
D5 45 058 14 200
D6 250 152 6000
D7 1 008 881 2950
D8 5400 136 1250

Table 2: Datasets

We create such a number of datasets in order to investigate the dependence of ranking accuracy on
the average length of a text fragment in the last experiment. In other experiments, only datasets D1, D2,
D3, D4 are used, because their average lengths of a text fragment are large enough to provide as much
information as possible to models and readability indices to estimate the complexity of text fragments.
Moreover, we will focus more on D4 in further experiments since there are quite a lot of pairs of text
fragments in this dataset, so that we can get more different possible values of the quality criterion as well
as train aggregated models on a larger number of pairs.
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6.2 Quality criterion

As a quality criterion we consider accuracy, i.e. the ratio of the number of correctly estimated pairs of
text pieces to the total number of pairs:

B > (aayep [S(d) > S(d)]
B D ’

where S denotes a model (or readability index), which produces document complexity score.

“

accuracy(S)

6.3 Separate models

In experiments (see Table 3), the best parameters (p, w;, <) (see the formula 1) of the models that
maximized the quality criterion are selected on D3 and D4 datasets (since they have more pairs, and this
means that it is potentially possible to get more different values of accuracy) or on similar-sized datasets
based on a series of textbooks by only one of the authors.

The weights w; are searched over the grid {1, ¢;, ¢;/n, ¢; — C, (;), (¢; — Cy (2;)) /n}. The para-
meter -y is searched over the following grid with a step 0.05: {0.01}U[0.05, 0.1, 0.15, ..., 0.9, 0.95]U
{0.99}. The parameter p is searched over the grid [1, 2, 3, 4]. In addition to the distance-based models
with the complexity function (2), the experiments also estimated the quality of the models, which are
based on the opposite hypothesis that the rarer the same tokens are found in the analysed text, the more
difficult they are to comprehend, with a complexity function C; = r;. But the quality of such models
was in the range of 30-60%, so they are not presented further.

Hyperparameters Accuracy on dataset, %

Ne Model name i ol DI D2 D3 D4

1 | letter_dist_0 ci/n 110.10 | 79.45 | 77.49 | 77.70 | 76.36
2 | letter_dist_1 ci/n 110.85]81.60 | 77.13 | 76.42 | 75.74
3 | letter_dist_2 C; 110.05] 80.92 | 72.08 | 80.66 | 67.29
4 | syllab_dist_0 ci/n 1]0.01 6349 |76.46 | 78.08 | 78.23
5 | syllab_dist_1 G 110.65] 73.61 | 63.19 | 72.27 | 59.57
6 | syllabsort_dist_0 | ¢; 1]0.05]79.07 | 67.65 | 82.04 | 76.25
7 | lexical_dist_0 (¢ci —Cy(x;)) /m | 1]0.01] 7517 | 76.11 | 84.88 | 82.01
8 | lexical_dist_1 C; 11099 | 82.38 | 76.94 | 85.64 | 76.17
9 | lexical_len_0 (ci —Cy(x;)) /m | 1]0.55]92.02|90.72 | 89.58 | 89.57
10 | lexical_len_1 ci/n 11085 88.41 | 87.52 | 87.00 | 86.86
11 | lexical_len_2 ci/n 11045]92.11 | 90.84 | 91.10 | 91.08
12 | lexical_len_3 (ci —Cy(x))/n | 11030 ] 93.48 | 92.06 | 91.70 | 91.28
13 | lexical_len_4 ci/n 2 10.65]190.36 | 89.38 | 92.76 | 87.72
14 | lexical_cnt_0 ci/n 21035170.79 | 61.77 | 72.02 | 63.10
15 | lexical_cnt_1 ci/n 210151 84.32 | 83.10 | 87.16 | 80.78
16 | lexical_cnt_2 C; 110.85] 63.68 | 57.70 | 63.25 | 57.50
17 | lexical_cnt_3 Ci 1104517381 |67.69 | 71.25| 60.92
18 | syntax_len_0 ci/n 21 0.01 | 88.61 | 83.77 | 86.14 | 83.95
19 | syntax_len_1 ci/n 2 10.35] 88.51 | 83.81 | 85.80 | 83.89
20 | syntaxpos_dist_0 | ¢; 11045] 81.60 | 81.67 | 85.58 | 78.99
21 | syntaxpos_dist_1 | ¢; 1]0.35] 83.93 | 82.39 | 86.30 | 80.84

Table 3: Selected parameters and accuracy of individual models on D3 and D4. Bold lines separate
different types of models. Models highlighted in bold show the greatest contribution to the ensemble in
ablation studies

As aresult, 21 models were selected to be used in aggregation experiments. The word length counter-
based lexical models show the best quality amongst the individual models, surpassing all the readability
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indices, whose accuracy on the same datasets is shown in the table 4. FKGL,, and FRES,, demonstrate
the best accuracy amongst the readability indices. If we focus only on the D4 dataset, then the best index
is FRES,,.

Accuracy on dataset, %
D1 D2 D3 D4
FKGL,, | 91.04 | 90.00 | 89.94 | 89.49
FRES;, | 90.75 | 90.00 | 90.30 | 90.50

CLI;y, 89.97 | 89.26 | 89.76 | 89.09
SMOG;, | 90.26 | 88.63 | 88.24 | 87.80

ARIL, | 9036 | 89.69 | 90.14 | 89.64

LIX 90.65 | 89.22 | 89.44 | 88.79
TI 90.94 | 89.97 | 89.92 | 89.55

Index

Table 4: Accuracy of readability indices on D1, D2, D3, and D4

6.4 Ensemble models

From the selected separate models (Table 3) the ensemble models are constructed. Due to the small size
of the datasets, linear regression with non-negative weights is used for the ensembling.

K
S(d,a) =Y apSk(d), ax >0, (5)
k=1

where vector « is a solution of the following optimization problem:

> L(S(d, o) — S(d, @) + AReg(cr) — min, (6)
(d, d")eD «

where £(M) is a non-increasing function of margin M, and Reg is a regularizer. The ensemble models
are trained on 80% of the dataset and validated on the remaining 20%.

We compare the ensemble models with and without regularization in experiments. For this purpose,
L1, L2, or elastic net regularization with a mixing hyperparameter equal to 0.5 are used. The hyperpara-
meter )\ is optimized over the grid [10~%,1073,1072,0.1, 1]. The following loss functions £ of margin
M are used:

L1(M) = (1— M).clip(min =0), La(M)=|1-M|, L3(M)=(1-M?),

Ly(M) =log(1+e M), L5(M)= 757, Le(M) =e M.

Tables 5, 6 show for each loss function the ensembles of 21 separate models from Table 3) of the best
validation accuracy on the datasets D4, D3, respectively.

The loss function L¢(M ) had an overflow problem, so its results are not shown in Tables 5, 6. The
following functions proved to be bad for our problem, thus their results are not presented in this paper:
Lr(M) = —|M|, Ls(M)=—-M?2, Lo(M)=1—M, L19(M) = (—M)3.

Ne | Loss function | Reg A Acc. on D4 [val.], %
1 L1 L2 | 107* 92.78
2 Lo L1 | 1072 91.24
3 L3 L1 | 1073 92.14
4 L4 Ll | 1073 88.00
5 Ls L1 1 82.73

Table 5: Validation accuracy of ensembles of 21 separate models for each loss function on D4
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Ne | Loss function | Reg A Acc. on D3 [val.], %
1 L1 L2 | 1073 93.61
2 Lo Ll | 1072 93.31
3 L3 L2 | 1073 94.51
4 L4 L1 | 0.1 91.11
5 Ls L1 1 90.81

Table 6: Validation accuracy of ensembles of 21 separate models for each loss function on D3

The experiments have shown the loss functions £, (M) and L2(M) to consistently be of the highest
quality, i.e. they are less sensitive to the selection of hyperparameters.

The accuracy of the readability indices on the same validation parts of the datasets D3, D4 is presented
in Table 7.

Index Acc. on D3, % | Acc. on D4, %
FKGL,, 89.71 88.40
FRES,, 89.81 89.90

CLI,, 89.11 87.90
SMOG;,, 87.31 86.71

ARI,, 89.31 88.75

LIX 89.01 87.76
TI 89.81 88.60

Table 7: Accuracy of readability indices on validation part of D3 and D4

6.5 Accuracy over grade pairs

The accuracy of the best ensemble of 21 separate models (first in Table 5) is examined in more detail
in the following section. Table 8 shows the values of the quality criterion (4) on every pair of grades
separately.

Acc. | 6 7 8 9 10 10+ 11 11+
5 1 1 1 1 1 1 1 1
6 | — 1095 1 1 1 1 1 1
7 |—| — 10975 1 1 1 1 1
8§ |—| — — 10955 | 097 1 1 1
9 |—| — — — 1 0.636 | 0.953 | 0.935 1
10 | — | — — — — 1 0.705 | 0.736 | 0.98
10+ | — | — — — — — | 0.591 | 0.984
11 |—| — — — — — — 0.98

Table 8: Validation accuracies of ensemble of 21 separate models on D4 over grade pairs

Table 8 demonstrates that the ensemble model accurately ranks by complexity the text pieces from
grades that are more than one—two years apart. It is also noticeable that the lower the grades of both
text pieces in a pair, the easier it is for the model to arrange them correctly. That looks logical, since the
increase in the complexity of texts of middle school textbooks should be more dramatic than that of high
school textbooks.

Table 9 shows the results for the F'RFES,,, readability index, which demonstrated the best accuracy
among other indices.
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Ace. | 6 | 7 8 9 10 10+ 11 11+
5 1 1 1 1 1 1 1 1
6 | — 1|08 1 1 1 1 1 1
7 |—| — | 0975 1 1 1 1 1
8 |—| — | — [0.736|0.993 1 1 1
9 |—| — | — — 1 0.882 | 0.915 | 0.871 | 0.991
0 | —| — | — — — 10524 | 0491 | 0.967
10+ | — | — | — — — — 10341 | 0.992
m | —|— | — — — — — 1

Table 9: Accuracy of F'RES,,, on validation part of D4 over grade pairs

6.6 Ablation study

In this experiment, we reduce the number of individual models in the ensemble model so as not to
degrade, but even to improve the quality.

For this purpose, we examine the vector o, computed as a result of training ensemble of 21 separate
models (first in Table 5). We sort its components in descending order: the weights corresponding to the
individual models that make the greatest contribution to estimating the text complexity are the first (see
Figure 2).

Vector a components
1.0 15

0.0 0.5 2.0 2.5
lexical_len_1 I O
lexical_len_0 I O N
letter_dist_1 ) O
syntax_len_0 L' | | |
syntax_len_1 Lo | | | ]
lexical_len_3 )
lexical_len_2 ]
n letter_dist_0 ||
g lexical_len_4 ]
g letter_dist_2
9 syllab_dist_0 1
[ syllab_dist_1
g syllabsort_dist_01
c% lexical_cnt_0

lexical_cnt_1 4
lexical_cnt_2 4
lexical_cnt_3 4
lexical_dist_0 4
lexical_dist_1
syntaxpos_dist_0 1

syntaxpos_dist_1

Figure 2: Importance of separate models

Further, a comparison of the validation accuracy on the dataset D4 of different ensembles with one re-
moved block of separate models of one type has shown that deleting the block with word length counter-
based lexical models or counter-based syntactic models leads to a significant loss of quality in all en-
sembles with the loss function £ and regularization. We examine ensembles with the loss function £
and regularization because this combination proved to be the best. Deleting the distance-based phon-
etic models block leads to a drop in accuracy on most of these ensembles. Deleting the distance-based
syntactic models, counter-based lexical models, distance-based lexical models or distance-based morph-
emic models block almost does not lead to significant quality losses, and in some cases even increases it.
Figure 3 shows how the accuracy of the best ensemble changes when one of the blocks is removed.
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Phonetic (distance)

Morphemic (distance)

Lexical (counter)

Lexical (distance)

Lexical (word length counter)

Removed model type

Syntactic (counter) ---
]
N I A A

0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95
Accuracy

Syntactic (distance)

Figure 3: The change in validation accuracy on D4 when removing the block of models of one type: pink
shows a decline in accuracy with respect to an ensemble of 21 models; bright green, respectively, shows
an improvement

As a next step, the comparison of ensembles of different sets of blocks without separate models of the
least importance (Figure 2) is carried out. As a result, the following ensemble model of nine separate
models proved to be the best:

* Distance-based phonetic models: letter_dist_0, letter_dist_1;

* Word length counter-based lexical models: lexical_len_0, lexical_len_1, lexical_len_2,

lexical_len_3, lexical_len_4;
* Counter-based syntactic models: syntaz_len_0, syntax_len_1.

Tables 10, 11 show for each loss function ensembles of nine separate models of the best validation
accuracy on the datasets D4, D3, respectively.

Ne | Loss function Reg A Acc. on D4 [val.], %
1 L4 elastic net | 10~ 93.48
2 Lo L2 1072 92.33
3 L3 L2 0.1 92.33
4 L4 — 0 93.23
5 Ls — 0 93.33
6 L L1 1073 93.23

Table 10: Validation accuracy of ensembles of 9 separate models for each loss function on D4

Ne | Loss function Reg A Acc. on D3 [val.], %
1 L1 — 0 94.91
2 Lo elastic net | 1072 94.51
3 L3 — 0 95.60
4 L4 — 0 93.51
5 Ls L1 1074 94.61
6 L L2 1074 94.91

Table 11: Validation accuracy of ensembles of 9 separate models for each loss function on D3

11
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The experiments have shown that of all the loss functions £1(M), Lo(M), L3(M) and Le(M) con-
sistently demonstrate a high accuracy with different values of hyperparameters. As for L4(M), L5(M),
it is better not to use regularization at all, since with it the quality drops quickly. It is also noticeable that
with a good set of separate models for ensembling, one can get an acceptable quality with almost any
loss function.

Thus, the experiments show that using the loss function £1(M) and any weak regularization with
hyperparameter A = 10~%... 1073 (or without regularization at all) is the best option.

6.7 Dependence of accuracy on the text fragment average length

In this experiment, the analysis of the dependence of the ranking accuracy on the average length of a text
fragment in a dataset is carried out. For this purpose, all built datasets based on textbooks are used (see
Table 2).

0.98 1
0.96
0.94
0.92 1
0.90 1
0.88 1
3 0.861
o
3 0.844
(9)
< 0.821 —— FKGLy
FRES,,
0.80 1 — ClLly,
0.781 — SMOG;,,
—— ARy,
0.761 —yY
0.74 1 m
0.72 - Ensemble of 21 models
’ Ensemble of 9 models
A~ = s 3 5 5
R & 3 s é? u‘? §

Average fragment length (in synbols)

Figure 4:

Figure 4 demonstrates that the accuracy begins to decrease as the length of the text fragment decreases,
both for models and for readability indices. A particularly sharp drop is noticeable, starting with a length
of 14200 characters or less. While with lengths of more than 14200 symbols, many indices and models
have a plateau in ranking accuracy. It is also clear from the figure that the aggregated models demonstrate
a higher quality than the readability indices for all the lengths of text fragments, and the ensemble of 9
models shows higher accuracy than the ensemble of 21 models. For this experiment, an ensemble of 21
models with a loss function £1(M) and with L2 regularization with hyperparameter A = 10~%, and an
ensemble of 9 models with loss function £1 (M) without regularization were selected.
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7 Conclusion

In this paper, a method of estimating the cognitive complexity of a text based on quantile-based models
is investigated. In particular, models are implemented at the phonetic, morphemic, lexical, and syntactic
levels of the language, as well as their ensembling. For the individual models the empirical distributions
of tokens over the reference collection of Russian Wikipedia articles are calculated. Ensemble models
are trained on the datasets formed from social studies textbooks for different grades. All the models con-
sidered are compared in accuracy with the readability indices adapted for the Russian language. Among
the individual models, the word length counter-based lexical models have shown the best accuracy, sur-
passing all the readability indices. The ensemble of 21 best separate models of all types has even more
significantly surpassed all the readability indices in terms of the accuracy of ranking pairs of text frag-
ments. The results of analysis of its accuracy for each pair of grades separately are consistent with our
ideas about the complexity of school textbooks. It is observed that the ensemble model accurately ranks
the text pieces by complexity from grades that are more than one to two years apart. It is also notice-
able that the lower the grades of both text pieces in a pair, the easier it is for the model to arrange them
correctly. The selection of the best ensemble (ablation study) is carried out, as a result of which the
ensemble of nine separate models shows further significant improvement in quality. It consists of models
of the following types: distance-based phonetic model, word length counter-based lexical model, and
counter-based syntactic model. The paper also analyzes the dependence of the ranking accuracy on the
average length of a text fragment in a dataset. As a result, it turned out that the accuracy decreases as the
average length of the fragment decreases. A particularly sharp drop begins when the number of symbols
is less than 14200.
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