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Abstract
In this paper, we introduce a novel approach to estimating the cognitive complexity of a text at different levels

of language: phonetic, morphemic, lexical, and syntactic. The proposed method detects tokens with an abnormal
frequency of complexity scores. The frequencies are taken from the empirical distributions calculated over the
reference corpus of texts. We use the Russian Wikipedia for this purpose. Ensemble models are combined from
individual models from different language levels. We created datasets of pairs of text fragments taken from social
studies textbooks of different grades to train the ensembles. Empirical evidence shows that the proposed approach
outperforms existing methods, such as readability indices, in estimating text complexity in terms of accuracy. The
purpose of this study is to create one of the important components of the system of recommendation of scientific
and educational content.
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Аннотация

В данной работе описывается подход к оцениванию когнитивной сложности текста на раз-
ных уровнях языка: на фонетическом, морфемном, лексическом и синтаксическом. В его основе
лежит определение токенов с аномальной частотой их сложностей. Частоты определяются по
эмпирическим распределениям, построенным на основе референтного корпуса текстов, в каче-
стве которого используется русскоязычная Википедия. Из отдельных моделей с разных уровней
языка создаются агрегированные модели. Для их обучения мы создали выборки пар фрагмен-
тов текстов, взятых из учебников по обществознанию разных учебных классов. Проведённые в
работе эксперименты показывают у предлагаемого подхода более высокую точность ранжирова-
ния текстов по сложности в сравнении с индексами удобочитаемости. Целью проведения данного
исследования является создание одного из важных компонентов системы рекомендации научно-
образовательного контента.

Ключевые слова: когнитивная сложность текстов, уровни языка, ансамблевое обучение
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1 Introduction

Many readability indices have been developed for the task of estimating the complexity of the text. Most
of them are a linear combination of some trivial statistical parameters of the text based on the number of
letters, syllables, words, and sentences. In this paper, we continue the research and improvement of the
generalised quantile-based approach to the estimation of the cognitive complexity of the text at different
levels of the language (phonetic, morphemic, lexical, and syntactic). The idea of such an approach was
first presented by Eremeev M.A. and Vorontsov K.V. in (Eremeev and Vorontsov, 2019). It is based on
the detection of tokens with an abnormal frequency of their complexity scores. We use the reference
corpus of texts, which is the Russian-language Wikipedia, to construct the empirical distributions for this
purpose. This paper is devoted to the study of the aggregation of individual quantile-based models in
order to take information from different levels of the language into account, and this is its novelty. We
train aggregated models on datasets of pairs of text fragments, which we created on the basis of social
studies textbooks of different educational grades. In this paper, we conduct experiments to compare the
accuracy of our models with adapted readability indices, including the comparison of accuracy over each
pair of educational grades. The analysis of the contribution of individual components to the aggregated
model (ablation study) and the analysis of the dependence of the ranking accuracy on the average length
of a text fragment in a dataset are also carried out. The experiments conducted in the paper demonstrate
that the proposed approach has a higher accuracy of ranking texts in terms of cognitive text complexity
compared to readability indices. The purpose of this study is to create one of the important components
of the system of recommendation of scientific and educational content.

2 Readability indices review

Historically linguists use readability indices for estimating text complexity of the educational literature.
Many of them were initially developed for the US education system and were therefore adapted for the
English language.

The automated readability index (ARI) was developed by R.J. Senter and E.A. Smith in 1967 (Senter
and Smith, 1967). It approximates a representation of the US grade level required to understand the
analysed text. For a document 𝑑𝑑 written in English ARI has the following calculation formula:

ARI(𝑑𝑑) = 4.71× 𝐶𝐶

𝑊𝑊
+ 0.5× 𝑊𝑊

𝑆𝑆
− 21.43,

where 𝐶𝐶 is the number of letters and digits, 𝑊𝑊 is the number of words, and 𝑆𝑆 is the number of sentences
in the text of the document 𝑑𝑑.

Läsbarhetsindex (LIX) was developed by Swedish scientist Carl-Hugo Björnsson in 1968 (Björnsson,
1968). Index value monotonically increases with respect to text complexity. LIX does not take into
account the language in which the text is written and is calculated as follows:

LIX(𝑑𝑑) =
𝐴𝐴

𝐵𝐵
+ 100× 𝐶𝐶

𝐴𝐴
,

where 𝐴𝐴 is the number of letters, 𝐵𝐵 is the number of sentences, and 𝐶𝐶 is the number of words longer
than 6 letters in the text of the document 𝑑𝑑.

In 1969 G. Harry McLaughlin developed the Simple Measure of Gobbledygook (SMOG) (McLaugh-
lin, 1969). This readability index produces an approximate number of years of study needed to compre-
hend the text. SMOG is calculated for the document 𝑑𝑑 written in English with the following formula:

SMOG(𝑑𝑑) = 1.0430

√︂
𝐴𝐴× 30

𝐵𝐵
+ 3.1291,

where 𝐴𝐴 denotes the number of polysyllabic words (3 and more syllables in English), and 𝐵𝐵 is the
number of sentences.
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Coleman–Liau index (CLI), developed in 1975 by Meri Coleman and T.L. Liau (Coleman and Liau,
1975), approximates a representation of the US grade level necessary to understand the given text. For
the document 𝑑𝑑 written in English CLI has the following calculation formula:

CLI(𝑑𝑑) = 0.0588× 𝐿𝐿− 0.296× 𝑆𝑆 − 15.8,

where 𝐿𝐿 denotes the average number of letters per 100 words, and 𝑆𝑆 refers to the average number of
sentences per 100 words.

In 1948 Rudolf Flesch developed the most popular measure of text complexity — the Flesch reading-
ease score (FRES) (Flesch, 1948). The index value monotonically declines with respect to text complex-
ity. FRES is calculated for the document 𝑑𝑑 written in English as follows:

FRES(𝑑𝑑) = 206.835− 1.015× ASL − 84.6× ASW,

where ASL is the average sentence length in words, and ASW is the average number of syllables per
word.

Flesch–Kincaid grade level (FKGL) was developed by J. Peter Kincaid in 1975 (Kincaid et al., 1975).
This readability index approximates a representation of the US grade level. FKGL has the following
formula for calculation for the document 𝑑𝑑 written in English:

FKGL(𝑑𝑑) = 0.39× ASL + 11.8× ASW − 15.59.

The Estonian linguist Juhan Tuldava proposed in 1975 his own readability index (Tuldava, 1975),
which we refer to in our article as the Tuldava index (TI). TI does not take the language of the text into
account and is calculated as follows:

TI(𝑑𝑑) = ASW × 𝑙𝑙𝑙𝑙(ASL).

In this paper, we estimate the complexity of Russian texts. Therefore, we use adapted versions of
indices for comparison with the proposed quantile-based approach.

Irina Oborneva made a significant contribution to the development of the readability formulae for texts
in Russian by adapting the FRES and FKGL indices in 2005 (Oborneva, 2005):

FRESru(𝑑𝑑) = 206.835− 1.3× ASL − 60.1× ASW,

FKGLru(𝑑𝑑) = 0.5× ASL + 8.4× ASW − 15.59.

Later, the results of the adaptation of the readability formulae for automated analysis of texts in Russian
were presented by Ivan Begtin in 2014 (Begtin, 2014). These implementations were collected in the
Python library ruTS by Sergey Shkarin in 2021 (Shkarin, 2021). We utilise this library to reproduce
baseline results for this paper. We have extended it by adding the Tuldava index and correcting the
wrong coefficients in the Coleman–Liau index. See the formulae for 𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟, and 𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟
readability indices adapted for the Russian language below (the variables that are not explained below
are the same as for the formulae for English):

ARIru(𝑑𝑑) = 6.26× 𝐶𝐶

𝑊𝑊
+ 0.2805× 𝑊𝑊

𝑆𝑆
− 31.04.

SMOGru(𝑑𝑑) = 1.1

√︂
𝐴𝐴× 64.6

𝐵𝐵
+ 0.05,

where 𝐴𝐴 denotes the number of polysyllabic words (4 and more syllables in Russian).

CLIru(𝑑𝑑) = 0.055× 𝐿𝐿− 0.35× 𝑆𝑆 − 20.33.

Text complexity estimates have many applications. For example, Arina Dmitrieva describes the meth-
ods of analysing legal documents in Russian based on readability indices (Dmitrieva, 2017). The FKGL
readability index was developed in order to compile the texts of instructions for the use of weapons or
technical means, and the SMOG index was used to study the text complexity of instructions for medi-
cines and preparations. Many indices are used to estimate the comprehensibility of textbooks offered to
students of different ages. The use of text complexity estimation can be helpful for predicting the time
spent processing regulations, documents, and educational literature.
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3 Generalised text complexity model

Let 𝑑𝑑 be an arbitrary document of length 𝑛𝑛 consisting of tokens 𝑥𝑥1, . . . , 𝑥𝑥𝑛𝑛 from a fixed finite alphabet
𝐴𝐴ℎ, where ℎ denotes the level of the language: phonetic, morphemic, lexical or syntactic. In this paper,
we consider letters, syllables, words, or sentences (or structures describing a part of speech and the
syntactic function of words) as tokens, depending on the level of the language. Suppose that every
token 𝑥𝑥𝑖𝑖 of the document 𝑑𝑑 has its own processing complexity 𝑐𝑐𝑖𝑖 caused by its context or by its internal
structure. Also assume that each token 𝑎𝑎 ∈ 𝐴𝐴ℎ has its usual processing complexity, which is a result of
the language evolution within a historical and cultural environment. If the current processing complexity
of the token 𝑥𝑥𝑖𝑖 = 𝑎𝑎 in the analysed text turns out to be abnormally high compared to the usual processing
complexity of token 𝑎𝑎, then we will assume that the token 𝑥𝑥𝑖𝑖 carries an excessive difficulty of perception.
The information about usual complexity of tokens can be retrieved from a reference collection denoted
by 𝐾𝐾, which is a large union of texts of medium complexity. In order to determine if the token 𝑥𝑥𝑖𝑖 ∈
𝑑𝑑𝑑𝑑𝑑 𝑖𝑖 = 𝑎𝑎 is abnormally complex we need to construct an empirical distribution of complexity scores
𝑐𝑐𝑗𝑗 of every token 𝑥̂𝑥𝑗𝑗 ∈ 𝐾𝐾 such that 𝑥̂𝑥𝑗𝑗 = 𝑎𝑎. The token 𝑥𝑥𝑖𝑖 is considered as abnormally complex if
its complexity score is greater than the 𝛾𝛾-quantile 𝐶𝐶𝛾𝛾(𝑥𝑥𝑖𝑖) of the constructed distribution for token (see
Figure 1).

Figure 1: Histogram for empirical distribution of complexity scores and its 𝛾𝛾-quantile

In Figure 1 the red zone corresponds to an abnormally high complexity. The green zone corresponds
to a low complexity. The blue zone indicates the usual complexity of the token.

We shall call the nonlinear sum of weights 𝑤𝑤𝑖𝑖 of tokens with abnormal complexities the document
complexity score and denote it by 𝑆𝑆(𝑑𝑑).

𝑆𝑆(𝑑𝑑) =

𝑛𝑛∑︁
𝑖𝑖=1

𝑤𝑤𝑝𝑝
𝑖𝑖 [𝑐𝑐𝑖𝑖 > 𝐶𝐶𝛾𝛾 (𝑥𝑥𝑖𝑖)] , (1)

where [ ] is the Iverson bracket (i.e. [true] = 1, [false] = 0), 𝑝𝑝 is a positive integer.
The weight 𝑤𝑤𝑖𝑖 is a non-negative value that does not decrease with increasing complexity 𝑐𝑐𝑖𝑖. Complex-

ity 𝑐𝑐𝑖𝑖 is defined up to an arbitrary increasing function.
Table 1 shows several examples of possible weights.

𝑤𝑤𝑖𝑖 Meaning of 𝑤𝑤𝑖𝑖

1 number of complex tokens
1/𝑛𝑛× 100% percentage of complex tokens

𝑐𝑐𝑖𝑖 total complexity
𝑐𝑐𝑖𝑖/𝑛𝑛 mean complexity

𝑐𝑐𝑖𝑖 − 𝐶𝐶𝛾𝛾 (𝑥𝑥𝑖𝑖) excessive complexity
(𝑐𝑐𝑖𝑖 − 𝐶𝐶𝛾𝛾 (𝑥𝑥𝑖𝑖)) /𝑛𝑛 mean excessive complexity

Table 1: Examples of weights 𝑤𝑤𝑖𝑖

Veselov A. S., Eremeev M. A., Vorontsov K. V.
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4 Token complexity functions

4.1 Distance-based complexity function
Let 𝑟𝑟𝑖𝑖 be a distance from the previous occurrence of the token 𝑥𝑥𝑖𝑖 to its current occurrence in the text:

. . . 𝑥𝑥𝑖𝑖−𝑟𝑟𝑖𝑖 = 𝑎𝑎 𝑥𝑥𝑖𝑖−𝑟𝑟𝑖𝑖+1 𝑥𝑥𝑖𝑖−𝑟𝑟𝑖𝑖+2 . . . 𝑥𝑥𝑖𝑖−2 𝑥𝑥𝑖𝑖−1 𝑥𝑥𝑖𝑖 = 𝑎𝑎⏟  ⏞  
𝑟𝑟𝑖𝑖

. . .

𝑟𝑟𝑖𝑖 = min
1⩽𝑗𝑗𝑗𝑗𝑗

{𝑖𝑖− 𝑗𝑗 | 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑗𝑗}.

In the first occurrence of the token 𝑎𝑎 in the text, at the position 𝑖𝑖, the distance 𝑟𝑟𝑖𝑖 is undefined. In that case
𝑟𝑟𝑖𝑖 is redefined such that the sum of all distances 𝑟𝑟𝑗𝑗 for this token 𝑥𝑥𝑗𝑗 = 𝑎𝑎 equals to the document length
𝑛𝑛.

To obtain a frequency model of complexity as a special case of the generalised model, the parameters
𝑐𝑐𝑖𝑖 are defined as some decreasing function of 𝑟𝑟𝑖𝑖, for example:

𝑐𝑐𝑖𝑖 = −𝑟𝑟𝑖𝑖 (2)

4.2 Counter-based complexity function
In the counter-based approach, as in the special case of the generalised approach, it is assumed that the
alphabet 𝐴𝐴ℎ consists of a single token 𝐴𝐴ℎ = {𝑎𝑎}, i.e. we distinguish not the tokens themselves, but only
their complexity. The complexity of tokens is determined by their linguistic properties, and each token
has exactly one possible complexity value. Thereby, just one empirical distribution of token complexities
is constructed over all tokens from the reference collection. In that case, 𝐶𝐶𝛾𝛾(𝑥𝑥𝑖𝑖) = 𝐶𝐶𝛾𝛾 .

5 Considered models

In this section, we describe individual models at different levels of language in terms introduced when
considering a generalised model above, i.e. by specifying the alphabets of tokens and complexity func-
tions. The available means of morphological, lexical, and syntactic analysis can be used to form alphabets
of tokens and characteristics of their complexity.

5.1 Phonetic level
We consider individual letters as tokens here. For this type of the models we use the distance-based
approach. The name of the model implemented in that way is 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.

5.2 Morphemic level
There are two possible ways to form tokens: either take the original syllables, or rearrange the letters in
them in alphabetical order so that the order of the letters is not taken into account. Therefore, we consider
two distance-based models, which we refer to as 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.

5.3 Lexical level
The tokens here are individual words. For models at this level (except the 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑙𝑙𝑙𝑙𝑙𝑙_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) we
consider different forms of one word to be equal and use the lemmatization of words as a preprocessing.

Distance-based model at this level is called 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.
Word length counter-based model considers the length of the word as its complexity score. To

implement such a model, we construct an empirical distribution of lengths of all words in the reference
collection. We refer to this model as 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑙𝑙𝑙𝑙𝑙𝑙_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.

Counter-based model at lexical level is based on the assumption that the rarer a word is encountered
in the reference corpus, the more specific and difficult it is. In the experiments, the following complexity
function is used:

𝑐𝑐𝑖𝑖 = − count(𝑥𝑥𝑖𝑖), (3)

where count(𝑥𝑥𝑖𝑖) is the number of token 𝑥𝑥𝑖𝑖 occurences in the reference collection. We refer to this model
as 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑐𝑐𝑐𝑐𝑐𝑐_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.

5
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5.4 Syntactic level
The tokens here are sentences or structures describing the part of speech and the syntactic function of
words in the sentence. In this paper, we use the UDPipe library to divide the text into sentences and
extract the syntactic dependencies and parts of speech (Straka and Straková, 2017).

Counter-based model at this level uses the maximum length of the syntactic dependency in the sen-
tence as a complexity score of this sentence. We refer to this model as 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑙𝑙𝑙𝑙𝑙𝑙_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.

Distance-based model considers a sentence as a set structures describing a part of speech and the
syntactic function of words in the sentence. Each such structure corresponds to one word. The word
itself is ignored, but information about its part of speech and syntactic role in the sentence is considered.
We refer to this model as 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.

6 Experiments

6.1 Reference collection and datasets
We use the Russian Wikipedia (1.5 million articles) as a reference collection for our experiments. The
ruwiki-latest-pages-articles.xml.bz2 archive was processed by the WikiExtractor parser. After the ad-
ditional preprocessing it was translated into a format where each article corresponds to its own TXT
document.

As a dataset we use the sets of social studies textbooks, prepared in (Solovyev et al., 2018): textbooks
by L.N. Bogolyubov for 6, 7, 8, 9, 10, 10+, 11+ grades («+» denotes a version with in-depth study)
and textbooks by A.F. Nikitin for 5, 6, 7, 8, 9, 10, 11 grades. In this dataset, each document contains
randomly shuffled sentences from the textbook. In order to create a dataset for the training and validation
of models, we first combined the texts of the textbooks intended for the same grade and then cut them into
pieces of similar length consisting of whole sentences. Afterwards, the fragments of texts of different
grades were combined into pairs, where a piece of text from a textbook of a higher grade comes second:
𝐷𝐷 = {(𝑑𝑑𝑑 𝑑𝑑′) | 𝑑𝑑′ more complex than 𝑑𝑑)}. The complexity of the textbook is determined by its grade,
which should be a fairly reliable characteristic to estimate the cognitive complexity of the text, since
textbooks are created in accordance with educational standards.

Eight datasets with different number of pairs were prepared. They are available at this link. For this
purpose, the length of one text fragment varied (see Table 2). Each dataset consists of all possible pairs
in such a way that each text piece of one grade is compared with each text piece of each other grade.

Dataset
name

Number of
pairs of text
fragments

Average number
of symbols in one

text fragment
D1 1027 94 100
D2 2532 59 850
D3 5001 42 650
D4 10 041 30 100
D5 45 058 14 200
D6 250 152 6000
D7 1 008 881 2950
D8 5 400 136 1250

Table 2: Datasets

We create such a number of datasets in order to investigate the dependence of ranking accuracy on
the average length of a text fragment in the last experiment. In other experiments, only datasets D1, D2,
D3, D4 are used, because their average lengths of a text fragment are large enough to provide as much
information as possible to models and readability indices to estimate the complexity of text fragments.
Moreover, we will focus more on D4 in further experiments since there are quite a lot of pairs of text
fragments in this dataset, so that we can get more different possible values of the quality criterion as well
as train aggregated models on a larger number of pairs.
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6.2 Quality criterion
As a quality criterion we consider accuracy, i.e. the ratio of the number of correctly estimated pairs of
text pieces to the total number of pairs:

accuracy(S) =

∑︀
(𝑑𝑑𝑑𝑑𝑑′)∈𝐷𝐷 [𝑆𝑆(𝑑𝑑′) > 𝑆𝑆 (𝑑𝑑)]

|𝐷𝐷|
, (4)

where 𝑆𝑆 denotes a model (or readability index), which produces document complexity score.

6.3 Separate models
In experiments (see Table 3), the best parameters (𝑝𝑝𝑝 𝑝𝑝𝑖𝑖, 𝛾𝛾) (see the formula 1) of the models that
maximized the quality criterion are selected on D3 and D4 datasets (since they have more pairs, and this
means that it is potentially possible to get more different values of accuracy) or on similar-sized datasets
based on a series of textbooks by only one of the authors.

The weights 𝑤𝑤𝑖𝑖 are searched over the grid {1, 𝑐𝑐𝑖𝑖, 𝑐𝑐𝑖𝑖/𝑛𝑛𝑛𝑛𝑛 𝑖𝑖 − 𝐶𝐶𝛾𝛾 (𝑥𝑥𝑖𝑖) , (𝑐𝑐𝑖𝑖 − 𝐶𝐶𝛾𝛾 (𝑥𝑥𝑖𝑖)) /𝑛𝑛}. The para-
meter 𝛾𝛾 is searched over the following grid with a step 0.05: {0.01}∪ [0.05, 0.1, 0.15, . . . , 0.9, 0.95]∪
{0.99}. The parameter 𝑝𝑝 is searched over the grid [1, 2, 3, 4]. In addition to the distance-based models
with the complexity function (2), the experiments also estimated the quality of the models, which are
based on the opposite hypothesis that the rarer the same tokens are found in the analysed text, the more
difficult they are to comprehend, with a complexity function 𝐶𝐶𝑖𝑖 = 𝑟𝑟𝑖𝑖. But the quality of such models
was in the range of 30-60%, so they are not presented further.

№ Model name Hyperparameters Accuracy on dataset, %
𝑤𝑤𝑖𝑖 𝑝𝑝 𝑝𝑝 D1 D2 D3 D4

1 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_0 𝑐𝑐𝑖𝑖/𝑛𝑛 1 0.10 79.45 77.49 77.70 76.36
2 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_1 𝑐𝑐𝑖𝑖/𝑛𝑛 1 0.85 81.60 77.13 76.42 75.74
3 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_2 𝑐𝑐𝑖𝑖 1 0.05 80.92 72.08 80.66 67.29
4 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_0 𝑐𝑐𝑖𝑖/𝑛𝑛 1 0.01 63.49 76.46 78.08 78.23
5 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_1 𝑐𝑐𝑖𝑖 1 0.65 73.61 63.19 72.27 59.57
6 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_0 𝑐𝑐𝑖𝑖 1 0.05 79.07 67.65 82.04 76.25
7 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_0 (𝑐𝑐𝑖𝑖 − 𝐶𝐶𝛾𝛾 (𝑥𝑥𝑖𝑖)) /𝑛𝑛 1 0.01 75.17 76.11 84.88 82.01
8 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_1 𝑐𝑐𝑖𝑖 1 0.99 82.38 76.94 85.64 76.17
9 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑙𝑙𝑙𝑙𝑙𝑙_0 (𝑐𝑐𝑖𝑖 − 𝐶𝐶𝛾𝛾 (𝑥𝑥𝑖𝑖)) /𝑛𝑛 1 0.55 92.02 90.72 89.58 89.57
10 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑙𝑙𝑙𝑙𝑙𝑙_1 𝑐𝑐𝑖𝑖/𝑛𝑛 1 0.85 88.41 87.52 87.00 86.86
11 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑙𝑙𝑙𝑙𝑙𝑙_2 𝑐𝑐𝑖𝑖/𝑛𝑛 1 0.45 92.11 90.84 91.10 91.08
12 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑙𝑙𝑙𝑙𝑙𝑙_3 (𝑐𝑐𝑖𝑖 − 𝐶𝐶𝛾𝛾 (𝑥𝑥𝑖𝑖)) /𝑛𝑛 1 0.30 93.48 92.06 91.70 91.28
13 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑙𝑙𝑙𝑙𝑙𝑙_4 𝑐𝑐𝑖𝑖/𝑛𝑛 2 0.65 90.36 89.38 92.76 87.72
14 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑐𝑐𝑐𝑐𝑐𝑐_0 𝑐𝑐𝑖𝑖/𝑛𝑛 2 0.35 70.79 61.77 72.02 63.10
15 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑐𝑐𝑐𝑐𝑐𝑐_1 𝑐𝑐𝑖𝑖/𝑛𝑛 2 0.15 84.32 83.10 87.16 80.78
16 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑐𝑐𝑐𝑐𝑐𝑐_2 𝑐𝑐𝑖𝑖 1 0.85 63.68 57.70 63.25 57.50
17 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑐𝑐𝑐𝑐𝑐𝑐_3 𝑐𝑐𝑖𝑖 1 0.45 73.81 67.69 71.25 60.92
18 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑙𝑙𝑙𝑙𝑙𝑙_0 𝑐𝑐𝑖𝑖/𝑛𝑛 2 0.01 88.61 83.77 86.14 83.95
19 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑙𝑙𝑙𝑙𝑙𝑙_1 𝑐𝑐𝑖𝑖/𝑛𝑛 2 0.35 88.51 83.81 85.80 83.89
20 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_0 𝑐𝑐𝑖𝑖 1 0.45 81.60 81.67 85.58 78.99
21 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_1 𝑐𝑐𝑖𝑖 1 0.35 83.93 82.39 86.30 80.84

Table 3: Selected parameters and accuracy of individual models on D3 and D4. Bold lines separate
different types of models. Models highlighted in bold show the greatest contribution to the ensemble in
ablation studies

As a result, 21 models were selected to be used in aggregation experiments. The word length counter-
based lexical models show the best quality amongst the individual models, surpassing all the readability
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indices, whose accuracy on the same datasets is shown in the table 4. FKGLru and FRESru demonstrate
the best accuracy amongst the readability indices. If we focus only on the D4 dataset, then the best index
is FRESru.

Index Accuracy on dataset, %
D1 D2 D3 D4

FKGLru 91.04 90.00 89.94 89.49
FRESru 90.75 90.00 90.30 90.50
CLIru 89.97 89.26 89.76 89.09

SMOGru 90.26 88.63 88.24 87.80
ARIru 90.36 89.69 90.14 89.64
LIX 90.65 89.22 89.44 88.79
TI 90.94 89.97 89.92 89.55

Table 4: Accuracy of readability indices on D1, D2, D3, and D4

6.4 Ensemble models
From the selected separate models (Table 3) the ensemble models are constructed. Due to the small size
of the datasets, linear regression with non-negative weights is used for the ensembling.

𝑆𝑆(𝑑𝑑𝑑𝛼𝛼) =
𝐾𝐾∑︁
𝑘𝑘=1

𝛼𝛼𝑘𝑘𝑆𝑆𝑘𝑘(𝑑𝑑), 𝛼𝛼𝑘𝑘 ⩾ 0, (5)

where vector 𝛼𝛼 is a solution of the following optimization problem:
∑︁

(𝑑𝑑𝑑 𝑑𝑑′)∈𝐷𝐷

ℒ(𝑆𝑆(𝑑𝑑′,𝛼𝛼)− 𝑆𝑆(𝑑𝑑𝑑𝛼𝛼)) + 𝜆𝜆Reg(𝛼𝛼) → min
𝛼𝛼

, (6)

where ℒ(𝑀𝑀) is a non-increasing function of margin 𝑀𝑀 , and Reg is a regularizer. The ensemble models
are trained on 80% of the dataset and validated on the remaining 20%.

We compare the ensemble models with and without regularization in experiments. For this purpose,
L1, L2, or elastic net regularization with a mixing hyperparameter equal to 0.5 are used. The hyperpara-
meter 𝜆𝜆 is optimized over the grid [10−4, 10−3, 10−2, 0.1, 1]. The following loss functions ℒ of margin
𝑀𝑀 are used:

ℒ1(𝑀𝑀) = (1−𝑀𝑀).𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚𝑚𝑚𝑚𝑚 = 0), ℒ2(𝑀𝑀) = |1−𝑀𝑀 |, ℒ3(𝑀𝑀) = (1−𝑀𝑀2),
ℒ4(𝑀𝑀) = log(1 + 𝑒𝑒−𝑀𝑀 ), ℒ5(𝑀𝑀) = 1

1+𝑒𝑒𝑀𝑀
, ℒ6(𝑀𝑀) = 𝑒𝑒−𝑀𝑀 .

Tables 5, 6 show for each loss function the ensembles of 21 separate models from Table 3) of the best
validation accuracy on the datasets D4, D3, respectively.

The loss function ℒ6(𝑀𝑀) had an overflow problem, so its results are not shown in Tables 5, 6. The
following functions proved to be bad for our problem, thus their results are not presented in this paper:
ℒ7(𝑀𝑀) = −|𝑀𝑀 |, ℒ8(𝑀𝑀) = −𝑀𝑀2, ℒ9(𝑀𝑀) = 1−𝑀𝑀 , ℒ10(𝑀𝑀) = (−𝑀𝑀)3.

№ Loss function Reg 𝜆𝜆 Acc. on D4 [val.], %
1 ℒ1 L2 10−4 92.78
2 ℒ2 L1 10−2 91.24
3 ℒ3 L1 10−3 92.14
4 ℒ4 L1 10−3 88.00
5 ℒ5 L1 1 82.73

Table 5: Validation accuracy of ensembles of 21 separate models for each loss function on D4
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№ Loss function Reg 𝜆𝜆 Acc. on D3 [val.], %
1 ℒ1 L2 10−3 93.61
2 ℒ2 L1 10−2 93.31
3 ℒ3 L2 10−3 94.51
4 ℒ4 L1 0.1 91.11
5 ℒ5 L1 1 90.81

Table 6: Validation accuracy of ensembles of 21 separate models for each loss function on D3

The experiments have shown the loss functions ℒ1(𝑀𝑀) and ℒ2(𝑀𝑀) to consistently be of the highest
quality, i.e. they are less sensitive to the selection of hyperparameters.

The accuracy of the readability indices on the same validation parts of the datasets D3, D4 is presented
in Table 7.

Index Acc. on D3, % Acc. on D4, %
FKGLru 89.71 88.40
FRESru 89.81 89.90
CLIru 89.11 87.90

SMOGru 87.31 86.71
ARIru 89.31 88.75
LIX 89.01 87.76
TI 89.81 88.60

Table 7: Accuracy of readability indices on validation part of D3 and D4

6.5 Accuracy over grade pairs
The accuracy of the best ensemble of 21 separate models (first in Table 5) is examined in more detail
in the following section. Table 8 shows the values of the quality criterion (4) on every pair of grades
separately.

Acc. 6 7 8 9 10 10+ 11 11+
5 1 1 1 1 1 1 1 1
6 — 0.95 1 1 1 1 1 1
7 — — 0.975 1 1 1 1 1
8 — — — 0.955 0.97 1 1 1
9 — — — — 0.636 0.953 0.935 1
10 — — — — — 0.705 0.736 0.98

10+ — — — — — — 0.591 0.984
11 — — — — — — — 0.98

Table 8: Validation accuracies of ensemble of 21 separate models on D4 over grade pairs

Table 8 demonstrates that the ensemble model accurately ranks by complexity the text pieces from
grades that are more than one—two years apart. It is also noticeable that the lower the grades of both
text pieces in a pair, the easier it is for the model to arrange them correctly. That looks logical, since the
increase in the complexity of texts of middle school textbooks should be more dramatic than that of high
school textbooks.

Table 9 shows the results for the 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 readability index, which demonstrated the best accuracy
among other indices.
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Acc. 6 7 8 9 10 10+ 11 11+
5 1 1 1 1 1 1 1 1
6 — 0.8 1 1 1 1 1 1
7 — — 0.975 1 1 1 1 1
8 — — — 0.736 0.993 1 1 1
9 — — — — 0.882 0.915 0.871 0.991

10 — — — — — 0.524 0.491 0.967
10+ — — — — — — 0.341 0.992
11 — — — — — — — 1

Table 9: Accuracy of 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 on validation part of D4 over grade pairs

6.6 Ablation study
In this experiment, we reduce the number of individual models in the ensemble model so as not to
degrade, but even to improve the quality.

For this purpose, we examine the vector 𝛼𝛼, computed as a result of training ensemble of 21 separate
models (first in Table 5). We sort its components in descending order: the weights corresponding to the
individual models that make the greatest contribution to estimating the text complexity are the first (see
Figure 2).
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Figure 2: Importance of separate models

Further, a comparison of the validation accuracy on the dataset D4 of different ensembles with one re-
moved block of separate models of one type has shown that deleting the block with word length counter-
based lexical models or counter-based syntactic models leads to a significant loss of quality in all en-
sembles with the loss function ℒ1 and regularization. We examine ensembles with the loss function ℒ1

and regularization because this combination proved to be the best. Deleting the distance-based phon-
etic models block leads to a drop in accuracy on most of these ensembles. Deleting the distance-based
syntactic models, counter-based lexical models, distance-based lexical models or distance-based morph-
emic models block almost does not lead to significant quality losses, and in some cases even increases it.
Figure 3 shows how the accuracy of the best ensemble changes when one of the blocks is removed.
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Figure 3: The change in validation accuracy on D4 when removing the block of models of one type: pink
shows a decline in accuracy with respect to an ensemble of 21 models; bright green, respectively, shows
an improvement

As a next step, the comparison of ensembles of different sets of blocks without separate models of the
least importance (Figure 2) is carried out. As a result, the following ensemble model of nine separate
models proved to be the best:

• Distance-based phonetic models: 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_0, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_1;
• Word length counter-based lexical models: 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑙𝑙𝑙𝑙𝑙𝑙_0, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑙𝑙𝑙𝑙𝑙𝑙_1, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑙𝑙𝑙𝑙𝑙𝑙_2,
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑙𝑙𝑙𝑙𝑙𝑙_3, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑙𝑙𝑙𝑙𝑙𝑙_4;

• Counter-based syntactic models: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑙𝑙𝑙𝑙𝑙𝑙_0, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑙𝑙𝑙𝑙𝑙𝑙_1.
Tables 10, 11 show for each loss function ensembles of nine separate models of the best validation

accuracy on the datasets D4, D3, respectively.

№ Loss function Reg 𝜆𝜆 Acc. on D4 [val.], %
1 ℒ1 elastic net 10−4 93.48
2 ℒ2 L2 10−2 92.33
3 ℒ3 L2 0.1 92.33
4 ℒ4 — 0 93.23
5 ℒ5 — 0 93.33
6 ℒ6 L1 10−3 93.23

Table 10: Validation accuracy of ensembles of 9 separate models for each loss function on D4

№ Loss function Reg 𝜆𝜆 Acc. on D3 [val.], %
1 ℒ1 — 0 94.91
2 ℒ2 elastic net 10−2 94.51
3 ℒ3 — 0 95.60
4 ℒ4 — 0 93.51
5 ℒ5 L1 10−4 94.61
6 ℒ6 L2 10−4 94.91

Table 11: Validation accuracy of ensembles of 9 separate models for each loss function on D3
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The experiments have shown that of all the loss functions ℒ1(𝑀𝑀), ℒ2(𝑀𝑀), ℒ3(𝑀𝑀) and ℒ6(𝑀𝑀) con-
sistently demonstrate a high accuracy with different values of hyperparameters. As for ℒ4(𝑀𝑀), ℒ5(𝑀𝑀),
it is better not to use regularization at all, since with it the quality drops quickly. It is also noticeable that
with a good set of separate models for ensembling, one can get an acceptable quality with almost any
loss function.

Thus, the experiments show that using the loss function ℒ1(𝑀𝑀) and any weak regularization with
hyperparameter 𝜆𝜆 = 10−4 . . . 10−3 (or without regularization at all) is the best option.

6.7 Dependence of accuracy on the text fragment average length
In this experiment, the analysis of the dependence of the ranking accuracy on the average length of a text
fragment in a dataset is carried out. For this purpose, all built datasets based on textbooks are used (see
Table 2).
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Figure 4:

Figure 4 demonstrates that the accuracy begins to decrease as the length of the text fragment decreases,
both for models and for readability indices. A particularly sharp drop is noticeable, starting with a length
of 14200 characters or less. While with lengths of more than 14200 symbols, many indices and models
have a plateau in ranking accuracy. It is also clear from the figure that the aggregated models demonstrate
a higher quality than the readability indices for all the lengths of text fragments, and the ensemble of 9
models shows higher accuracy than the ensemble of 21 models. For this experiment, an ensemble of 21
models with a loss function ℒ1(𝑀𝑀) and with L2 regularization with hyperparameter 𝜆𝜆 = 10−4, and an
ensemble of 9 models with loss function ℒ1(𝑀𝑀) without regularization were selected.
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7 Conclusion

In this paper, a method of estimating the cognitive complexity of a text based on quantile-based models
is investigated. In particular, models are implemented at the phonetic, morphemic, lexical, and syntactic
levels of the language, as well as their ensembling. For the individual models the empirical distributions
of tokens over the reference collection of Russian Wikipedia articles are calculated. Ensemble models
are trained on the datasets formed from social studies textbooks for different grades. All the models con-
sidered are compared in accuracy with the readability indices adapted for the Russian language. Among
the individual models, the word length counter-based lexical models have shown the best accuracy, sur-
passing all the readability indices. The ensemble of 21 best separate models of all types has even more
significantly surpassed all the readability indices in terms of the accuracy of ranking pairs of text frag-
ments. The results of analysis of its accuracy for each pair of grades separately are consistent with our
ideas about the complexity of school textbooks. It is observed that the ensemble model accurately ranks
the text pieces by complexity from grades that are more than one to two years apart. It is also notice-
able that the lower the grades of both text pieces in a pair, the easier it is for the model to arrange them
correctly. The selection of the best ensemble (ablation study) is carried out, as a result of which the
ensemble of nine separate models shows further significant improvement in quality. It consists of models
of the following types: distance-based phonetic model, word length counter-based lexical model, and
counter-based syntactic model. The paper also analyzes the dependence of the ranking accuracy on the
average length of a text fragment in a dataset. As a result, it turned out that the accuracy decreases as the
average length of the fragment decreases. A particularly sharp drop begins when the number of symbols
is less than 14200.
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