Computational Linguistics and Intellectual Technologies:
Proceedings of the International Conference “Dialogue 2023”

June 14-16, 2023

MaxProb: Controllable Story Generation from Storyline

Sergey Vychegzhanin Anastasia Kotelnikova
Vyatka State University Vyatka State University
Kirov, Russia Kirov, Russia
vychegzhaninsv@gmail.com kotelnikova.av@gmail.com
Alexander Sergeev Evgeny Kotelnikov
Vyatka State University Vyatka State University
Kirov, Russia Kirov, Russia
sergeev.alexander(O@gmail.com kotelnikov.ev@gmail.com
Abstract

Controllable story generation towards keywords or key phrases is one of the purposes of using language models.
Recent work has shown that various decoding strategies prove to be effective in achieving a high level of language
control. Such strategies require less computational resources compared to approaches based on fine-tuning pre-trained
language models. The paper proposes and investigates the method MaxProb of controllable story generation in Rus-
sian, which works at the decoding stage in the process of text generation. The method uses a generative language
model to estimate the probability of its tokens in order to shift the content of the text towards the guide phrase. The
idea of the method is to generate a set of different small sequences of tokens from the language model vocabulary,
estimate the probability of following the guide phrase after each sequence, and choose the most probable sequence.
The method allows evaluating the consistency of the token sequence for the transition from the prompt to the guide
phrase. The study was carried out using the Russian-language corpus of stories with extracted events that make up
the plot of the story. Experiments have shown the effectiveness of the proposed method for automatically creating
stories from a set of plot phrases.

Keywords: text generation; decoding strategy; GPT

DOI: 10.28995/2075-7182-2023-22-539-553

MaxProb: Ynpas/siemasi reHepauusi UCTOPUil
HAa OCHOBE CIOKeTHBIX JIUHUH

Bbruer:kanun C. B. KorenbHukosa A. B.
Bsarckuii rocynapcTBEHHbIN BsTckuii rocynapCTBEHHBIN
YHUBEPCUTET YHUBEPCUTET
Kupog, Poccus Kupog, Poccus
vychegzhaninsv@gmail.com kotelnikova.av@gmail.com

Ceprees A. B. Koreabuukos E. B.
Bsitckuii rocynapcTBeHHbIN BsiTckuii rocynapcTBeHHbIN
YHUBEPCUTET YHUBEPCUTET
Kupos, Poccus Kupos, Poccus
sergeev.alexanderO@gmail.com kotelnikov.ev@gmail.com
AHHOTaNMA

VYnpasiisiemas reHepanus HCTOPUM 110 HaIpaBJICHUIO K KJIIOUEBBIM CIIOBAM MJIM BBIPAXKECHUSAM SIBJIETCS OFHON U3
LieJiel MCIOJIb30BaHHs SI3bIKOBBIX Mozenell. HenaBHue paboThl moka3aiy, 4To UCIIONb30BaHNE PA3INYHbIX CTPaTeruid
JEKOUPOBaHUS BIsETCS 3(PHEKTUBHBIM MOAXOIOM TS JOCTIXKEHHS BHICOKOTO YPOBHS yIpaBieHus sa3bikoM. Takue
cTpareruy TpeOyIOT MEHBIIE BBUHCIUTENBHBIX PECYpPCOB MO CPABHEHHUIO C MOAXOIAMH, OCHOBAHHBIMHU Ha TOHKON
HAaCTPOHKe MPeBApUTEILHO 00YUCHHBIX S3BIKOBBIX MOJeNel. B cTaThe MpeiokeH 1 HCCIeT0BaH METO I YIIPAaBIIsie-
MO TeHepaIui HCTOPHH Ha pycCKoM si3bike MaxProb, paboTatomuii Ha STare JeKOAUPOBaHUS B IIPOLIECCE FeHePaLin

Vychegzhanin S. V., Kotelnikova A. V., Sergeev A. V., Kotelnikov E. V.

TekcTa. MeTo/i OCHOBaH Ha MCIIOIb30BAHHU TE€HEPATUBHOI SA3bIKOBOH MOZEIH IS OLCHKH BEPOSATHOCTH €€ TOKCHOB
C LICJIbIO CMEICHMS COJEPKAHUS TEKCTA K HAIpPaBIIOIIEMY BhIpaykeHHI0. Mies MeTo/a 3aKiirouaeTcs B TeHepaln
MHOKECTBA PA3JIMYHBIX HEOOJIBIINX 10 JUTHHE MOCIIE0BATEIBHOCTEH TOKEHOB U3 CJIOBAPS A3BIKOBON MOJICIIH, OLICHKE
BEPOSITHOCTH CJICIOBAHMS HANPABIISIOLICH (pasbl MOCIEe KaxkI0H MOCIeJ0BaTEIbHOCTH, H BBIOOpE HanboJIee BEpOsIT-
HOH TIOCIIEI0BATENEHOCTH. MeTox 03BOJISIET OLEHUTD JIOTHYHOCTH ITOCIEN0BATEIFHOCTH TOKEHOB JUIS TIepexoza oT
3aTpaBKM K HANpaBJIONIEMy BRIpakeHHIO. VccrieoBanue MpOBOIMINCH C UCIIONB30BAaHUEM PYCCKOS3BITHOTO KOP-
Iyca MCTOPHU C BBIACIICHHBIMH COOBITHSIMU, COCTABIISIIOIIMMY CIOXKET UCTOPHU. DKCHEPHMEHTHI OKa3aiu 3 dek-
THUBHOCTb IIPEJIaraeMoro MeTozia Jlsi aBTOMaTHYECKOTO CO3/IaHusI UCTOPUiT U3 Habopa CIOKETHBIX (pa3.
KuroueBbie cjioBa: reHepaius TeKCTOB; cTparerus gekoguposanus; GPT

1 Introduction

Natural language generation (NLG) is one of the important areas of computational linguistics. It aims
to produce plausible and readable text in a human language. In recent years, the use of large-scale pre-
trained language models (PLMs), in particular transformer-based PLMs [21], has shown promising re-
sults, allowing generating more diverse and fluent texts. Modern neural network models such as GPT-3
[2] can create texts that are difficult to distinguish from texts written by a human.

NLG technologies are crucial in many applications such as dialogue and question-answering systems,
story generation, advertising, marketing, product and service reviews.

Controllable Text Generation is a problem actively explored in NLG. This is the task of generating
texts that meet certain control constraints set by a human [16]. Sentiment, keywords, events, etc. can be
considered as such constraints. For example, when generating a story, it is important to control the story-
line and the ending.

There are two types of control over text generation models: soft and hard control. The aim of soft
control is, e.g., to provide the desired sentiment or topic of the generated text. Hard control requires
ensuring that the text contains explicit constraints, e.g., certain keywords. Figure 1 shows an example
of hard controllable text generation, where the story is generated according to the keywords provided
by the storyline and the order in which they appear [25].

Storyline needed — money — computer — bought — happy

John needed a computer for his birthday. He worked hard to earn
Generated story | money. John was able to buy his computer. He went to the store
and bought a computer. John was happy with his new computer.

Figure 1: Example of controllable story generation with hard control

Many existing controllable generation methods [5], [8], [25] require the creation of training corpora
and the implementation of a training procedure that is labor intensive and time consuming. This paper
overcomes this problem by developing a plug-and-play method applicable to any large-scale PLM. Cur-
rently, there are not enough studies on the controllable text generation in Russian, so the proposed
method is tested on Russian language models and text corpora.

The idea of the method is to generate a set of short sequences of words that provide a coherent tran-
sition from the prompt to the guide phrase, and then estimate the probability of following the guide
phrase after each generated sequence and choose the most probable sequence. This method is plug-and-
play, i.e. it can be used with any autoregressive model. The experiments carried out on generating stories
from a set of events that make up the plot of a story prove the effectiveness of the proposed method for
creating texts from a set of plot phrases.

The contribution of the paper is as follows:

e we offer MaxProb — a method of controllable text generation that generates stories in accordance
with a user-specified sequence of guide phrases that make up the plot of the story;

e we apply the method to the Russian language;

e we form a text corpus containing stories with extracted storylines;

e we experiment with story generation to confirm the effectiveness of the proposed method.

MaxProb: Controllable Story Generation from Storyline

2 Previous work

This section discusses the existing methods of controllable text generation that can be applied to the
problem of story generation, which is of primary research interest. Automated story generation is the
problem of mechanically selecting a sequence of events or actions that meet a set of criteria and can be
told as a story [11]. Each story has a story world, interacting characters, and objects. The complexity of
the story generation task is to generate a coherent and fluent story that is much longer than the user-
specified prompt.

Controllable generation methods can be classified into three categories [26]: fine-tuning, retraining
or refactoring, post-processing. Fine-tuning PLMs on a specialized data set is the main way to interact
with models. Methods of this type fine-tune some or all of the model parameters to create texts that
satisfy certain constraints. Early work on controllable story generation used convolutional and recurrent
neural networks. Fan et al. [6] used a two-stage hierarchical approach. At the first stage, using the con-
volutional neural network, a premise, which determined the structure of the story, was generated. Then
the premise was converted into a text passage using the seq2seq model. Yao et al. [25] used the RAKE
algorithm [18] to build a storyline for each story from the corpus at the training stage using the most
important words. After the storyline was generated, the seq2seq model converted it into text.

Reinforcement learning can be used for controllable story generation. For example, Tambwekar et al.
[20] developed a reward-shaping technique that produces intermediate rewards at all different time-
steps, which are then back-propagated into a language model in order to guide the generation of plot
points towards a given goal.

Later, pre-trained language models based on the Transformer architecture began to be used for con-
trollable generation. The prompt-based approach became widespread. Li and Liang [12] proposed a
method called “prefix tuning” that freezes the parameters of the PLM and performs error backpropaga-
tion to optimize a small continuous task-specific vector called “prefix”. A similar P-tuning method [10]
differs from prefix tuning in that it does not place a prompt with the “prefix” in the input, but constructs
a suitable template composed of the continuous virtual token, which is obtained through gradient de-
scent.

Retraining or refactoring involves changing the architecture of the language model or retraining a
model from scratch. This approach is limited by the insufficient amount of labeled data and the high
consumption of computing resources. One of the first models in this direction was CTRL [8]. The model
was trained on a set of control codes. Zhang et al. [27] proposed POINTER, an insertion-based method
for hard-constrained text generation, which involves preserving of specific words.

Cho et al. [4] proposed Story Control via Supervised Contrastive learning model to create a story
conditioned on genre. The model learns conditional probability distribution by supervised contrastive
objective, combined with log-likelihood objective.

Methods based only on using a decoder are called post-processing. Such methods require less com-
putational resources. A representative of this group of methods is PPLM [Dathathri et al., 2020], which
first trains an attribute discriminant model and then uses it to guide language model to generate the text
with corresponding topic or sentiment. This group also includes the Keyword2Text method [15], which
can be applied to an existing autoregressive language model without additional training. The idea of the
method is to shift the output distribution of the language generation model to the semantic space of a
given guide word in the word2vec or GloVe vector space. A similar idea is used in [22], but the difference
is that the score function of the autoregressive language model is modified with the score function of
another language model from the family of autoencoding models rather than with the cosine similarity
to the target keyword.

Yang et al. [24] developed the Re3 framework to automatically generate longer stories of over two
thousand words. Re3 first creates a structured plan, setting and characters by prompting GPT-3 with a
premise. Then Re3 injects contextual information from both the plan and current story state into new
GPT-3 prompt to generate new story passages.

In this paper, we propose a post-processing method that implements a decoding strategy based on
heuristics. The difference from previous works [15], [22] lies in the fact that at each generation step for
small sequences of tokens, the probability of following the guide phrase is estimated. The method is
based on the idea that choosing a sequence of tokens, after which the probability of following the guide
phrase is maximum, will induce the model to generate text, shifting its content to the guide phrase.

Vychegzhanin S. V., Kotelnikova A. V., Sergeev A. V., Kotelnikov E. V.

3 Controllable text generation

In this paper, we consider conditional probabilistic models for which the probability of the output text
X = {x, ..., X} can be factorized by tokens:

Pe0 = | [PGl M
i=1

where x; denotes the i-th output token, and x.; denotes previous tokens x, ..., X;_1.
In accordance with formula (1), the goal of conditional text generation can be formulated as follows:

P(xIe) = | [Plailxcs O @
i=1

where C denotes the control conditions and X is the generated text, which complies with the control
conditions.

While generating, sequences of natural language units (symbols, words, or sentences) are decoded
from the probability distribution P. The decoding strategy plays an important role. At each time step, it
selects tokens from the probability distribution over a model vocabulary. Beam search [14] and nucleus
sampling [7] are examples of known decoding strategies.

Generative language models such as GPT learn to predict the next token in a given sequence of tokens.
Text generation is a natural application for such models. However, when predicting the next token of a
sequence, they are not able to take into account the context following it, which is supposed to be the
content of the generated text.

In this study, we propose the MaxProb method, which at each generation step determines the most
probable sequence of tokens for logically linking the prompt and the guide phrase that should be used
in the text. The idea of the method is based on using intrinsic knowledge of a pre-trained language model
to evaluate the token sequences and select the appropriate sequence for a coherent transition to the guide
phrase. The proposed method can be applied to any autoregressive language model.

Let us consider the sequence X = {Xq, ..., Xj—1, X{, Xi41, «-» Xi+k» L, o» t}. For a given prompt
X1.i-1 = {xq, ..., x;_1} and a guide phrase T = {ty, ..., t,, } theoretically it is possible to find the con-
necting sequence X;.; 4, = {x;, Xj4+1, ..., Xi+x} using exhaustive search of tokens from the model vocab-
ulary. However, such search has an exponential dependence on the length of the connecting sequence
and is not applicable in practice. Therefore, in order to reduce the number of variants we propose a
heuristic technique for generating and evaluating connecting sequences (Fig. 2).

o)) (o) o g
OeC) i) (o JQoma)- B 2 — YOG

-/

| DG
s Guide phrase
xi,r)(xm,,)()(Xﬂk,r} Pr=P(T|XSi+k,r)

L |

Connecting sequences max(P4,...,P;)=P,

Prompt

Figure 2: MaxProb method scheme

First, as continuations of the prompt X;.;_4, r different sequences of tokens of length k + 1 are gen-
erated using some decoding strategy. Next, for each of the r sequences, the probability of following the
guide phrase T after it is determined by the formula:

m
P(XiivilX1.i-1,T) = P(T|Xgiyp) = 1_[P(tjlt<j, X<ivk)- 3)
j=1

MaxProb: Controllable Story Generation from Storyline

Further, at the current generation step, a sequence is selected for which the probability (3) is maxi-
mum, and the sequences of length k 4+ 1 are repeatedly generated. In order to fulfill the condition of the
explicit presence of the guide phrase in the text, after the generation of a given number of tokens is
completed, this phrase can be inserted in the position in the text where it had the maximum probability
for the entire generation time. After the phrase is inserted, the generation can continue towards the next
guide phrase.

Formula (3) makes it possible to estimate the probability of following the guiding phrase for each
connecting sequence of tokens, but does not evaluate their semantic similarity. There may be cases where
semantic similarity is more important than the likelihood of following the guide phrase. To assess the
similarity of the connecting sequence and the guide phrase, it is proposed to use the Jaccard coefficient:

_ C
A+B-C
where A is the set of words in normal form from the prompt, B is the set of words in normal form from
the guide phrase, C is the set of common words for the prompt and the guide phrase.

Taking into account formulas (3) and (4) for connecting sequences, the average score, which estab-
lishes a balance between the two measures, can be determined by the formula:

K, 4)

Scorey,,., = WprobProrm + WK, ()

where Wy,..p, Wy are weight coefficients, Py, 1s the normalized probability of following the guide
phrase.

Thus, at each time step, the proposed method allows selecting the most logical sequence of tokens for
linking the prompt and the guide phrase, based on the knowledge of the generative model itself.

As an example of how the method works, let us consider a text at some i-th generation step and a
guide phrase separated by a sequence of unknown tokens, for example, of length 3 (Fig. 3). In the figure,
the prompt for the autoregressive model is highlighted in blue, and the guide phrase is highlighted in
orange. The connecting sequence is marked with labels <x;><x,><x3>.

OpHaKJbl B JieCy, OKOJIO PeuyKHd, CHJieJ MaJbiuK ¢ 6abyumkoil. Bapyr B 3To BpeMs H3-3a
<X1><X2><X3>

Once in the forest, near the river, a boy was sitting with his grandmother. Suddenly, at this time,
<X1><X2><X3>

Score P K, <X1><X2><X3>, Russian <x;1><x;><x3>, English
KyCTOB BBILLIH BOJIKH wolves came out from behind the
0.944 3.20E-11 0.200 bushes
a wolf came out from around the
0226 650E-12 0200 OPOPOTABHIETBOIL o per,
0.105 1.90E-13 0.100 pgepeBa Ha NOJISAHY from behind a tree to a clearing
0.100 4.60E-18 0.100 jmepeBa BbICKOUMJIO from behind a tree jumped out
a lion came out from behind the
0.100 9.30E-19 0.100 ACPEBPEBBRIIENIEE, oo,
0.100 5.70E-22 0.100 jepeBbeB BHILLIN TPU from behind a tree appeared three
0100 3.00E-24 0.100 gsﬁi];:’;: MOKASANACE 4.,m behind a tree appeared a large
0.052 2.80E-13 0.100 gepeBbeB BHICKOUHJIU from behind the trees jumped out
from around the corner of the forest
0.048 1.70E-13 0.100 OPOPOTAJIECABRIIET e out
MOBOpPOTA pevyKHU BbICKO- out of the turn of the river, jumped
0.044 9.40E-15 0.100 yuan out

Figure 3: Example of prompt and connecting sequences at the i-th generation step

Vychegzhanin S. V., Kotelnikova A. V., Sergeev A. V., Kotelnikov E. V.

The prompt is an input of the autoregressive model. With some decoding strategy, such as top-k sam-
pling, r different sequences of 3 tokens <x;><x;><x3> are generated. For them, the probabilities of fol-
lowing the guide phrase P and the Jaccard coefficients K, are calculated. The calculated values are av-
eraged by formula (5). The sequences of tokens are sorted in descending order of Score, and the sequence
with the highest value of the average score is selected. The selected sequence is attached to the prompt,
and the generation process continues until the specified number of tokens is generated.

4 Text corpus

To conduct experiments, a text corpus' was formed from fairy tales in Russian with extracted storylines.
The corpus is made up of fairy tales placed on nukadeti.ru® with a length of no more than 5000 charac-
ters. In total, the training corpus contains 562 fairy tales.

In each fairy tale, plot phrases were singled out, i.e. phrases that determine the main events in the
story, the storyline. To do this, first, in each fairy tale keywords and phrases were selected, using the
methods yake® [3], rakun®, frake®, textrank®, rutermextract’, keybert® methods. Each method selected
15 keywords and phrases. The yake and rutermextract methods showed the best quality, so their results
were used in the next stage to compose plot phrases.

The yake and rutermextract methods were selected out of six methods manually. The main problems
with other methods were the following. The top keywords and phrases of the rakun and the keybert were
very often parts of each other, they intersected, i.e. were parts of one longer phrase. So, the number of
sentences with these selected keywords was very low and the plot could not be built out of them.

The frake’s results often contained just single words and it was very difficult to understand from
which sentences they were selected (if they repeated several times).

The problem of textrank was that it didn’t pay attention to sentence segmentation — many selected
phrases were parts of two neighbor sentences.

Further, plot phrases were extracted from fairy tales according to the following algorithm:

1. Events were found. Events are syntactically related triples <object, action, object> (for example,
“crapyxa, ucrekia, komobok” — “old woman, baked, bun”). The objects were selected from a set of
keywords, and the actions was determined from the parse tree as nodes, syntactically associated with
the objects. The stanza library® was used to make the syntax parsing of the sentences.

2. The most important events found were selected from the found events. Each selected event was
assigned a weight obtained by summing the weights of the keywords extracted by the yake and rutermex-
tract methods separately.

3. From the selected important events, a plot phrase was formed, determined by a 4-clement set
(04, v,0,,m), where v is a verb, o are objects related to the verb, m is a modifier, prepositional object,
or indirect object. Prepositions are possible before o and m. An example of an event: “grooves in the
forest spilled into whole streams”, where “spilled” is v, “grooves” and “streams” are o, “forest” is m
(“xaHaBKU B JleCy pa3NIWIKACh B IENbIe pydbn”’, UV — “pa3iuiuch’, 0 — “KaHaBKH , “IleJble Py4YbH’, M —
“necy”).

For each of the two methods for extracting keywords, their own plot phrases were formed, the number
of which, depending on the fairy tale, varied from 0 to 26. Figure 4 shows the distribution of the number
of plot phrases extracted using the yake and rutermextract methods.

!https://github.com/icecreamz/MaxProb.

2 https://nukadeti.ru.

3 https://github.com/LIAAD/yake.

4 https://github.com/SkBlaz/rakun.

5 https://github.com/cominsys/FRAKE.

6 https://github.com/JRC1995/TextRank-Keyword-Extraction.
7 https://github.com/igor-shevchenko/rutermextract.

8 https://github.com/MaartenGr/KeyBERT.

9 https://stanfordnlp.github.io/stanza.

MaxProb: Controllable Story Generation from Storyline

70
60

5

4

3

A
LT

o h |||||I||I||.....

0123456 7 8 91011121314151617181920212223242526
Number of plot phrases

Number of fairy tales
o o o o

o

Hyake M rutermextract

Figure 4: Distribution of the number of plot phrases

The number of sentences in fairy tales varied from 4 to 139. The distribution of the number of sen-
tences is shown in Fig. 5.

18
16
14
12

10

() BN ee)

Number of fairy tales

>

N

0 20 40 60 80 100 120 140 160
Number of sentences

Figure 5: Number of sentences in fairy tales

Since the number of resulting plot phrases should correlate with the length of the tale, the plot was
assembled from the selected phrases according to the following algorithm:

1. The minimum number of phrases in the plot is 1, the maximum is the rounded-up value of the log-
rhyme to base 2 of the number of sentences n in the text: [log,n].

2. If the yake method returned the number of plot phrases in the above range, these phrases were taken
in order as a plot.

3. If the yake method produced fewer plot phrases, and the rutermextract method yielded enough,
then the rutermextract phrases were taken in order as a plot.

4. If both methods returned the number of phrases less than the minimum value, their results were
combined without repetitions in the order of the sentences in the text.

Vychegzhanin S. V., Kotelnikova A. V., Sergeev A. V., Kotelnikov E. V.

5. If the yake method produced more plot phrases than the maximum allowable in accordance with
point 1, then a part of the fragments with maximum weights was taken for the required amount.

Table 1 shows the distribution of the number of phrases in the plot in the training corpus. The first
column contains the number of phrases in the plot, the second — the number of fairy tales with such a
number of phrases, the third — the share of the total number of fairy tales in the training corpus, i.e., from
562 fairy tales.

A test corpus of 25 plots was also formed. The distribution by the number of plot phrases in the test
corpus is proportional to the distribution in the training corpus and is given in the fourth column of
Table 1.

. Share of the total .
Fairy tales . # Fairy tales
Plot phrases . . S number of fairy tales, .
in the training corpus o in the test corpus
(1]
1 31 5.46 1
2 48 8.45 2
3 53 9.33 2
4 56 9.86 3
5 107 18.84 5
6 185 32.57 8
7 80 14.08 4
8 2 0.35 0

Table 1: Distribution of the number of phrases in the plot

Table 2 shows statistics on the number of tokens received using the ruGPT-3 Large tokenizer in fairy
tales of training corpus, depending on the number of plot phrases.

Plot phrases Minimum number Maximum number Average number
of tokens of tokens of tokens
1 28 900 230.9
2 85 400 238.9
3 115 1,015 3443
4 128 752 308.9
5 212 950 476.4
6 406 1,283 796.0
7 757 1,503 1,150.1
8 1,555 1,897 1,726.0

Table 2: Number of tokens

5 Experimental Setup

Keywords used in plot events were extracted from texts using the yake and rutemextract libraries. The
initial word forms for calculating the Jaccard coefficient were determined using the pymorphy?2 library
[9]. Text generation experiments were carried out using the ruGPT-3 Large'’ language model (760 mil-
lion parameters), which is the Russian-language version of the GPT-2 model [17].

In the experiments, fairy tales were generated according to a given sequence of events that determines
the plot of the fairy tale. The top-k sampling decoding strategy with parameter k = 10 was used as a
decoding strategy in MaxProb to obtain connecting sequences of tokens.

The values of the weight coefficients in formula (5) were determined empirically based on the analysis
of the generated connecting sequences. The coefficients took the values wy.,, = 0.9 and w; = 0.1. The
probability of following the guide phrase turned out to be more significant, and due to the w; coefficient,
the connecting sequence that was closest in content to the guide phrase was ranked first.

10 https://huggingface.co/sberbank-ai/rugpt3large_based on_gpt2.

MaxProb: Controllable Story Generation from Storyline

The length of connecting sequences was 3 tokens. Experiments were also carried out for windows
ranging in size from 1 to 15 tokens. According to the results of the experiments, a small window of
connecting sequences had a better effect on shifting the content of the generated text towards the plot
phrase than a large window. With a large window size, suitable short sequences of words, most likely
followed by a guide phrase, could be missed, and as a result, the content of the generated text deviated
significantly from the content of the guide phrase.

The maximum length of the generated fairy tale (in tokens) depended on the number of plot phrases
and was equal to the average number + 10% of the tokens (see Table 2).

The proposed method was compared with three methods of controllable text generation:

1. Inserting key phrases in a prompt (PromptLearn).

When conducting experiments using the PromptLearn method, the ruGPT-3 Large model was fine-
tuned with 80% of the tales from the training corpus for three epochs. The prompt with size up to 1024
tokens was used as input data for the model:

“Plot: {plot phrase 1}, {plot phrase 2}, ..., {plot phrase n}.\n
Text: {the text of fairy tale}”

For each tale, the number of plot phrases ranged from 1 to 8. To generate fairy tales, sampling was used
with parameters p = 0.95 and k = 50. The length of the generated fairy tale was chosen similarly to
MaxProb.

2. Few-shot learning (FewShotLearn).

The ruGPT-3 Large model was also used to apply the FewShotLearn method. The prompt was used
as input for the model:

“Compose text with keywords:\n
Plot: {plot phrase 1}, {plot phrase 2}, ..., {plot phrase n}.\n
Text: {the text of fairy tale} ###
Plot: {plot phrase 1}, {plot phrase 2}, ..., {plot phrase n}.\n
Text: {the text of fairy tale}”

The number of fairy tales input to the model depended on the estimated maximum length of the gen-
erated text so that the total input sequence fit into 2048 tokens allowed for the model. The range of the
number of input training examples is from 1 to 5, most often 3. When generating texts, the same param-
eters as for PromptLearn were used. The length of the generated fairy tale was chosen similarly to Max-
Prob.

3. Constrained beam search (ConstrainedBS).

ConstrainedBS was used as the baseline of controlled generation. Plot phrases were tokenized and
used as a list of restrictions. The generation was carried out using the ruGPT-3 Large model. The prompt
“Onnaxapr” (“Once”) was used as an input of the model. The number of beams varied from 7 to 10 to
generate different stories. A prohibition on the repetition of 3-grams was also established. The length of
the generated fairy tale was chosen similarly to MaxProb.

The quality of the generated texts was evaluated using automatic and human-centric evaluation meth-
ods. Four measures were used for automatic evaluation [13], [23], [28]:

— perplexity (PPL) — is a metric to measure how well the language probability model predicts a
sample. It is usually calculated as the exponential mean of the negative log-probability per token
in the language model. We calculated perplexity using the ruGPT-3 Medium'' language model
(350 million parameters);

- repetition (Rep) evaluates the proportion of repeated 4-grams in the text, where the tokens be-
long to the vocabulary of the ruGPT-3 Large model;

— Word Inclusion Coverage (Cov) shows the percentage of plot words included in the generated
text. Plot and generated words are lemmatized;

- self-BLEU-5 evaluates the syntactic diversity of a given set of texts. It is defined as the average
overlap between all generated texts.

1 https://huggingface.co/sberbank-ai/rugpt3medium_based on_gpt2.

Vychegzhanin S. V., Kotelnikova A. V., Sergeev A. V., Kotelnikov E. V.

10

Three measures were used for human-centric evaluation:
— coherence — whether the story is consistent in terms of causal relationships in the context;
— relevance — the story corresponds to the plot, the events in the story unfold in accordance with
the storyline;
— interestingness — how the user likes the story, whether it is interesting.

6 Results and discussion

Table 3 shows the statistical characteristics of the generated texts, calculated using the GEM-metrics
library'?:

— Avg length — the average length of texts (in words);

— Vocab size — the number of different words;

— Distinct-n — the ratio of distinct n-grams over the total number of n-grams.

Generation methods | Avg length | Vocab size | Distinct-1 | Distinct-2 | Distinct-3
ConstrainedBS 447 3,149 0.11 0.49 0.85
FewShotLearn 158 1,998 0.19 0.57 0.77
PromptLearn 430 3,608 0.13 0.50 0.77
MaxProb 497 3,015 0.10 0.41 0.70

Table 3: Statistical characteristics of generated texts

Analyzing Table 3, you can see that the FewShotLearn method, on average, generated fairy tales 3
times shorter than the other three methods. It should be noted that when generating longer tales, the first
tale was often interrupted and a new tale began.

Table 4 shows the average values of perplexity, repetition, word inclusion coverage, and self-BLEU-5
measures calculated for fairy tales generated from 25 storylines of test corpus. For each storyline, two
fairy tales were generated. A total of 50 tales were generated by each method.

Additionally, the scores were also calculated for the base model ruGPT-3 Large. The ruGPT-3 Large
model was preliminarily fine-tuned on the training corpus of fairy tales with the addition of the prefix
“Tekct: ” (“Text: ”) to the beginning of each fairy tale, which was then used as a prompt during gener-
ation. The experiments used the strategy of decoding top-k sampling with the parameter k = 10.

Generation methods | PPL +Std | | Rep, % | 1 Cov, % | | Self-BLEU-5
ruGPT-3 53+1.5 26.43 20.07 0.028
ConstrainedBS 6.8+2.5 0.61 80.86 0.094
FewShotLearn 99+6.1 16.40 43.49 0.014
PromptLearn 6.8+t1.7 14.82 71.32 0.032
MaxProb 70+1.4 18.33 99.54 0.063

Table 4: Automatic quality scores for generation methods

The values of the Cov measure in Table 4 show that the MaxProb method ensures that more than 99%
of the words from the storyline events appear in the text. The texts generated by this method met the
requirement of matching the storyline to the best extent. The smallest number of words from the story-
line appeared in the texts generated by the FewShotLearn method and is 43.49%. In such texts, the
required characters and events were rare. This is largely due to the relatively short length of the generated
tales.

The values of the Rep measure for the FewShotLearn, PromptLearn, and MaxProb methods are quite
close to each other and vary from 14.82% to 18.33%. The ConstrainedBS method has a Rep value close
to zero as a result of setting the prohibition on the repetition of 3-grams, otherwise the generation was
often reduced to repetitions of words. Repeatability values do not suggest a significant superiority of

12 https://github.com/GEM-benchmark/GEM-metrics.

MaxProb: Controllable Story Generation from Storyline

one method over others. Notably, controllable generation methods reduced the repeatability value com-
pared to the ruGPT-3 base model.

The lowest PPL value among controllable generation methods was obtained for PromptLearn and
ConstrainedBS and is 6.8. The MaxProb method showed a 0.2 higher average PPL, but it has a lower
standard deviation, i.e. provides a more stable level of perplexity. For the FewShotLearn method, per-
plexity and standard deviation were the highest. It is known, that a lower perplexity value corresponds
to a better model. The increase in perplexity compared to the base ruGPT-3 model indicates that the
control process is “unnatural” for the model. This causes the model to be more "surprised" by the tokens
observed in the text.

The self-BLEU-5 measure has the lowest value for FewShotLearn. The texts generated by this method
turned out to be the most syntactically diverse. The variety of PromptLearn is at the level of the basic
ruGPT-3 model. The least varied texts are for the ConstrainedBS method.

To calculate human-centric measures, the generated texts were evaluated by three annotators for co-
herence, relevance, and interestingness. The assessment was carried out on a 5-point Likert scale (1 —
the worst, 5 — the best). For all the methods, only the generated sequence was evaluated, without prompt.
Inter-annotator agreement was measured using the Spearman coefficient [1]. The value of this coeffi-

cient for the “coherence” criterion was 0.54, “relevance” — 0.87, “interestingness” — 0.59. The values,
which are greater than 0.5 indicate high annotator agreement [19].

Table 5 shows the average scores of coherence, relevance and interestingness.

Generation methods

1 Coherence

1 Relevance | 1 Interestingness
ConstrainedBS 1.65 291 1.56
FewShotLearn 2.23 1.63 2.25
PromptLearn 2.62 2.23 2.82
MaxProb 2.20 4.89 2.74

Table 5: Human-centric quality scores for generation methods

The coherence scores for all methods turned out to be low, less than 3 points. The low coherence is

due to the quality of the ruGPT-3 base model, which was used in the experiments. The PromptLearn
method turned out to be the best in terms of coherence, the MaxProb method more often violated the
coherence, and ConstrainedBS generated practically incoherent texts. However, MaxProb almost always
ensured that all events from the storyline appeared in the text, as evidenced by a high relevance score.
Despite the lowest coherence, the texts with MaxProb were slightly less interesting than with the

PromptLearn method, but were more interesting than with FewShotLearn.
Figure 6 shows the parallel coordinates visualization of all calculated measures.

2600

2400

2000

Distinct-1 Distinct-2

0.186224

0.45 0.74

0.095605 0.414%1 0.696

Distinct-3

Perplexity

Repetition

26,

2.62 4.83

Figure 6: The parallel coordinates visualization of the measures

W | * i FewShotLearn
Vo / PromptLearn
Vol f‘ MaxProb

Coherznce Relevance Intersstingness

Methods

ConstrainedBS

11

Vychegzhanin S. V., Kotelnikova A. V., Sergeev A. V., Kotelnikov E. V.

12

Let us give a specific example of the MaxProb method (Fig. 7). For the guide phrase “the cat ate sour
cream” (“koT chen cMmerany”’) for some i-th step, the text “An old woman had a cat, whom she loved
very much and called: Ko-ko-ko. The cat loved” (“Y omHo# cTapymiku OBUT KOT, KOTOPOTO OHA OYEHB
nro0miia u koroporo 3Bana: Ko-ko-ko. Kot ouens moouin”). At the i-th step, using the decoding strategy
top-k sampling, the connecting sequences of three tokens were obtained, shown in Fig. 7. For each
sequence, the probabilities of following the guide phrase P by formula (3), the Jaccard coefficients K
by formula (4) and the average values of Score by formula (5) are calculated. According to the results
of'the i-th step, the sequence “milk with bread,” (“momoko ¢ xiedom,”) was chosen, which has the highest
average Score.

Y omHO# cTapymiku OB KOT, KOTOPOTO OHA OYEHB JIO0MIAa U KOToporo 3Bana: Ko-ko-ko. Kot ouenn
TOOMIT <X1><X2><X3>

An old woman had a cat, whom she loved very much and called: Ko-ko-ko. The cat loved
<X1><X2><X3>

Score P K <X1><X2><X3>, Russian <x1><X2><x3>, English
0.900 2.50E-10 0.111 MOJIOKO C XJICOOM, milk with bread,
0.121 590E-12 0.143 crapymiky, old woman,
0.113 3.60E-12 0.143 , 4TOOBI €r0 , to be

0.105 1.30E-12 0.143 CBOIO KOILKY U his cat and
0.104 1.20E-12 0.143 ee, 1a her, yes

0.102 6.60E-13 0.143 ee M He her and not
0.101 1.60E-13 0.143 , Korjia ero , when he

0.100 6.40E-15 0.143 ee, Ona her, She

0.100 1.40E-15 0.143 oty crapymky this old woman
0.066 6.20E-12 0.125 MOJIOKO, H, milk, and,

Figure 7: Connecting sequences and their scores on the i-th step of generation

Table 6 shows the connecting sequences for steps i + 1 through i + 5. The sequences that received
the highest Score value are highlighted in blue at each step. These sequences were chosen as the most
probable ones and added to the prompt.

Ne Stepi+1 Step i + 2 Stepi + 3 Step i + 4 Stepi+ 5
OITHAXKIBI KOT
1 | a eme Oomblie - CMETaHy . WU Bor cner BCIO CMETaHy
JO0MIT CMe-
2 | u, xorga . A eme OIHAX[IBI, KOTa | CMETaHy U
TaHy,
. OITHAXK]IBI BEUe-
3 | axne0 - CO CMETaHOH C MOJIOKOM. CMETaHBbI,
pOM KOIIKa
OJTHAX/IBI yTPOM | CTOJIBKO CMeE-
4 | a Oosblire BCEro €J1 CMETaHy, , HO MOJIOKO
cTapymnika TaHbI,
5 | mo3TOMY, KaK - C MOJIOKOM, , I TIODTOMY OH KaK-TO BCE CMETAHHOE
, IO3TOMY KaX- | OH JIOOMI cMe-
6 | HO He MHO0uU, C MOJIOKOM, 9 BCE CMETaHBI
TG TaHy
7 | ¥ mo3TOMy OH JIIOOMII, KOTAa , kKoTopas OpLIa OH, YTOOBI BCE MOJIOKO,
8 | HO OH He CO CIIMBOYHBIM | | XJIe0. , kKorma oH BCE MOJIOKO,
. . [TorTOoMy Oa- i
9 | ¥ ecll MOJIOKO C KaIyCTOoH, , OJTHAX Bl KOT BCE, U4TO
Oy1ka
10 | HO MOJIOKA B C CBIPOM, . Kot en , Kak-TO LeNBIA XJ1e0 U

MaxProb: Controllable Story Generation from Storyline

woman

Ne Stepi+1 Step i + 2 Step i + 3 Step i + 4 Stepi + 5
1 | and even more — sour cream . And then one day the cat all the sour
ate cream
2 | and, when e . And then one day, when sour cream and
cream,
3 | and bread — with sour with milk. Oncg in the sour cream,
cream evening the cat
Once in the so much sour
4 | and most of all ate sour cream, | , but milk evening the old

cream,

5 | that’s why, how — with milk, , and that’s why | he once all of sour cream

6 | he didn’t liked, with milk, » that’s why he liked sour all sour cream
every cream

7 | and that’s why he | liked, when , which was he, to all milk,

8 | but he didn’t with creamy and bread. , when he all milk,

9 | and if milk with cabbage, - That’s why the , once the cat all, that
old woman

10 | but milk in with cheese, . The cat ate , once whole bread and

Table 6: Connecting sequences on stepsi + 1, ..., i + 5 of generation: Russian (top) and English

(bottom) versions

As aresult, after i + 5 steps, the text was generated: “An old woman had a cat, whom she loved very
much and called: Ko-ko-ko. The cat loved milk with bread, and even more — sour cream. And then one
day the cat ate all the sour cream”. This example demonstrates that choosing a sequence after which the
probability of a guide phrase is maximum induces the generative model to lead the text to the required
phrase. At the same time, the connecting sequence may not contain the guide phrase in an explicit form,
but be close to it in meaning due to synonyms.

7 Conclusion

The proposed MaxProb method allows generating stories in accordance with a user-specified sequence of
guide phrases that determines the plot of the story. Guide phrases describe some of the key events in the
story and consist of several words. The method uses a generative language model to estimate the proba-
bility of following a guide phrase after various short sequences of tokens generated by the model. The
method selects the sequence with the highest probability, prompting the model to shift the content of the
text towards the guide phrase. Experiments carried out using the Russian-language corpus of fairy tales
with extracted storylines showed that the proposed method provides a high proportion of story words (more
than 99% in Cov) and phrases (4.89 points in Relevance) in the text. In terms of text quality (PPL measure
and interestingness), the method is comparable to the PromptLearn fine-tuning method, but it does not
require creating a training corpus and the executing of a time-consuming training procedure.

Ethical considerations

The proposed method helps to control the content of automatically generated text according to the user's
needs. Note that large language models, including the one used in the proposed ruGPT-3 method, gen-
erate texts similar to texts written by a person. However, it is not guaranteed that the generated texts are
factually correct. They may contain false or fictitious information that may mislead the non-expert
reader. When using plot phrases containing factually incorrect information, the generation will be based
on false content and, therefore, will lead to the creation of inaccurate texts. Like any tool, it can be used
for negative purposes. Content control can lead to the creation of fake text for the purpose of deception,
disinformation or propaganda. We hope that our method will be used for positive purposes, like helping
writers to create fairy tales in accordance with a given plot. Placing such methods in the public domain
will help develop countermeasures to detect them.

13

Vychegzhanin S. V., Kotelnikova A. V., Sergeev A. V., Kotelnikov E. V.

14

Acknowledgements

This work was supported by Russian Science Foundation, project Ne 23-21-00330, https://rscf.ru/en/pro-
ject/23-21-00330/.

References

[17] Amidei J., Piwek P, Willis A. Agreement is overrated: A plea for correlation to assess human evaluation
reliability // Proceedings of the 12th International Conference on Natural Language Generation. — 2019. —
P. 344-354.

[2] Brown T.B., Mann B., Ryder N., Subbiah M., Kaplan J. et al. Language models are few-shot learners //
Advances in Neural Information Processing Systems. — 2020. — Vol. 33. — P. 1877-1901.

[3] Campos R., Mangaravite V., Pasquali A., Jorge A., Nunes C., Jatowt A. YAKE! Keyword Extraction from
Single Documents using Multiple Local Features // Information Sciences Journal. — 2020. — Vol. 509. —
P. 257-289.

[4] Cho ., Jeong M., Bak J., Cheong Y.-G. Genre-controllable story generation via supervised contrastive learn-
ing // Proceedings of the ACM Web Conference 2022. — 2022. — P. 2839-2849.

[5] Dathathri S., Madotto A., Lan J., Hung J., Frank E., Molino P., Yosinski J., Liu R. Plug and play language
models: A simple approach to controlled text generation / Computing Research Repository. — 2020. —
arXiv:1912.02164. — Access mode: https://arxiv.org/abs/1912.02164.

[6] Fan A., Lewis M., Dauphin Y. Hierarchical neural story generation // Computing Research Repository. —
2018. — arXiv:1805.04833. — Access mode: https://arxiv.org/abs/1805.04833.

[71 Holtzman A., Buys J., Du L., Forbes M., Choi Y. The curious case of neural text degeneration // Proceedings
of the 8th International Conference on Learning Representations. — 2020. — P. 1-16.

[8] Keskar N.S., McCann B., Varshney L., Xiong C., Socher R. CTRL — A Conditional Transformer Language
Model for Controllable Generation // Computing Research Repository. —2019. —arXiv:1909.05858. — Access
mode: https://arxiv.org/abs/1909.05858.

[9] Korobov M. Morphological Analyzer and Generator for Russian and Ukrainian Languages // Analysis of
Images, Social Networks and Texts. —2015. — P. 320-332.

[10] Lester B., Al-Rfou R., Constant N. The Power of Scale for Parameter-Efficient Prompt Tuning // Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing. —2021. — P. 3045-3059.

[11] LiB., Lee-Urban S., Johnston G., Riedl M. O. Story generation with crowdsourced plot graphs // Proceedings
of the Twenty-Seventh AAAI Conference on Artificial Intelligence. — 2013. — P. 598-604.

[12] Li X. L., Liang P. Prefix-Tuning: Optimizing Continuous Prompts for Generation // Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing. —2021. — P. 4582—4597.

[13] Lin B.Y., Zhou W., Shen M., Zhou P., Bhagavatula C., Choi Y., Ren X. CommonGen: A constrained text
generation challenge for generative commonsense reasoning // Findings of the Association for Computational
Linguistics: EMNLP 2020. — 2020. — P. 1823-1840.

[14] Meister C., Vieira T., Cotterell R. If beam search is the answer, what was the question? // Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing. — 2020. — P. 2173-2185.

[15] Pascual D., Egressy B., Meister C., Cotterell R., Wattenhofer R. A Plug-and-Play Method for Controlled Text Gen-
eration // Findings of the Association for Computational Linguistics: EMNLP 2021. —2021. — P. 3973-3997.

[16] Prabhumoye S., Black A.W., Salakhutdinov R. Exploring Controllable Text Generation Techniques // Pro-
ceedings of the 28th International Conference on Computational Linguistics. — 2020. — P. 1-14.

[17] Radford A., Wu J., Child R., Luan D., Amodei D., Sutskever I. Language models are unsupervised multitask
learners // OpenAl blog. —2019. — Vol. 1(8). — Access mode: https://openai.com/blog/better-language-models.

[18] Rose S., Engel D., Cramer N., Cowley W. Automatic keyword extraction from individual documents // Text
Mining: Applications and Theory. —2010. — P. 3-20.

[19] Rosenthal J.A. Qualitative descriptors of strength of association and effect size. Journal of social service
Research. — 1996. — Vol. 21(4). — P. 37-59.

[20] Tambwekar P., Dhuliawala M., Martin L.J., Mehta A., Harrison B., Riedl M.O. Controllable Neural Story
Plot Generation via Reward Shaping // Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, [JCAI-19. International Joint Conferences on Artificial Intelligence Organization. —
2019. — P. 5982-5988.

[21] Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A.N., Kaiser L., Polosukhin I. Attention is
All you Need // Proceedings of the 31st Conference on Neural Information Processing Systems (NeurIPS). —
2017. - Vol. 30. — P. 6000-6010.

[22] Vychegzhanin S., Kotelnikov E. Collocation2Text: Controllable Text Generation from Guide Phrases in Rus-
sian // Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference
"Dialogue-2022" — Issue 21. — P. 564-576.

MaxProb: Controllable Story Generation from Storyline

[23] Welleck S., Kulikov I., Roller S., Dinan E., Cho K., Weston J. Neural text generation with unlikelihood
training // Proceedings of the 8th International Conference on Learning Representations. — 2020. — P. 1-18.

[24] Yang K., Tian Y., Peng N., Klein D. Re3: Generating longer stories with recursive reprompting and revision
/I Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP
2022). —2022. — P. 4393-4479.

[25] Yao L., Peng N., Weischedel R., Knight K., Zhao D., Yan R. Plan-and-Write: Towards Better Automatic
Storytelling // Proceedings of the AAAI Conference on Artificial Intelligence. — 2019. — Vol. 33(01). —
P. 7378-7385.

[26] Zhang H., Song H., Li S., Zhou M., Song D. A Survey of Controllable Text Generation using Transformer-
based Pre-trained Language Models // Computing Research Repository. —2022. — arXiv:2201.05337. Access
mode: https://arxiv.org/abs/2201.05337.

[27] Zhang Y., Wang G., Li C., Gan Z., Brockett C., Dolan B. POINTER: Constrained Progressive Text Generation
via Insertion-based Generative Pre-training // Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP). — 2020. — P. 8649-8670.

[28] Zhu Y., Lu S., Zheng L., Guo J., Zhang W., Wang J., Yu J. Texygen: A benchmarking platform for text gen-
eration models // The 41st International ACM SIGIR Conference on Research & Development in Information
Retrieval. — 2018. — P. 1097-1100.

15

	Vychegzhanin S. V., et al.: MaxProb: Controllable Story Generation from Storyline

