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Abstract

We propose a realization of sequence labeling approach to grammatical error correction of Russian. We discuss
the difficulties of method adaptation and the modifications we made in order to deal with Russian morphology.
Our model outperforms SOTA single model approaches on GERA corpus, achieving the F0.5 score of 69.9%, and
shows solid performance on other corpora as well.
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Адаптация метода разметки последовательности для исправления
грамматических ошибок в русскоязычных текстах

Аннотация

В работе предлагается адаптация метода исправления грамматических ошибок, основанного
на разметке последовательности, к русскому языку. Мы подробно описываем сделанные моди-
фикации, позволяющие учитывать сложную морфологию русского языка в задаче исправления
грамматических ошибок. На корпусе GERA наш метод показывает качество на уровне передовых
подходов, достигая F0.5-меры в 67%.

Ключевые слова: Исправление грамматических ошибок, разметка последовательности, язы-
ковые модели

1 Introduction

Grammatical Error Correction is the task of converting a source text to its correct variant without any
grammatical errors, namely punctuation, orthographic, syntactic, lexical and other mistakes. As any
text-to-text task, it is naturally treated as “translation” from the language of ungrammatical texts to the
language of grammatical ones. Consequently, standard models for machine translation (MT), such as
Transformer, can be used for GEC task without adaptation. These models are trained on large corpora of
parallel data, containing pairs of source sentences and their corrected versions.

Despite being fruitful and successful, this approach does not take into account the crucial difference
between GEC and machine translation: in case of MT source and target texts are not superficially related.
These texts may even use different alphabets. Although the source and the target languages may have
some related words, the word order usually undergoes significant changes during translation. However,
the correspondence between initial texts and target texts in GEC is less arbitrary. Most of the words
remain the same during the correction and the ones subject to modification often do not change their
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positions. Though sometimes grammar correction requires complete rewriting of the sentence, albeit
such cases are relatively rare.

Moreover, single word edits are also restricted. For example, in case of morphological errors the
correct word form belongs to the same lexeme and may be selected from the finite list of the source word
inflections. Likewise, typo corrections usually belong to the finite set of dictionary words on Levenshtein
distance 1 from the source word. Word deletions and insertions primarily involve closed parts of speech,
such as prepositions, determiners and punctuation marks. Given all of this, the ability of sequence-to-
sequence models to generate arbitrary texts is redundant during GEC task and may even be detrimental
due to the hallucinations that change the meaning of the original text.

Due to these considerations, it might be beneficial to formalize GEC as sequence labeling task as op-
posed to sequence transduction task. Instead of generating the target text, the sequence labeling model
predicts individual word edits that transform the original sequence of words into the correct one. This
approach was proposed in the seminal GECTOR paper(Omelianchuk et al., 2020) for the English lan-
guage, achieving the state-of-the-art performance at the time of publication (2020). In addition to its
high quality, the GECTOR approach has other benefits: sequence labeling is much faster than sequence
transduction and requires less data to converge during training. It is also more interpretable than the usual
sequence rewriting as individual edit operations correspond to common error patterns, such as choosing
a wrong word form or an incorrect preposition.

Unfortunately, this interpretability does not come for free: the more complex is the morphology of
the language, the more labour is required to design the label system reflecting it. Because of this, we do
not know any equivalents of GECTOR for other languages than English except Chinese. We fill this gap
by creating a GECTOR-like model for Russian and show its competitive performance on Russian GEC
benchmarks.

2 Related Work

The task of GEC has long been perceived as either a classification task or an instance of machine trans-
lation. The first approach entails the training of classifiers to predict the most likely correction out of a
confusion set for the particular error type, for example, incorrect usage of determiners or prepositions
(Dahlmeier and Ng, 2012; Rozovskaya and Roth, 2019). The second approach defines GEC as the task
of translating a sentence from the grammatically “incorrect language” to the grammatically “correct”
one (Náplava and Straka, 2019; Grundkiewicz et al., 2019). Both solutions have their advantages and
limitations. While classifiers achieve high performance on the error types they have been trained for, they
are unable to correct other types of mistakes. MT models, on the other hand, are able to handle various
types of errors, but require much more training data and computational resources, than classifiers.

Another way of managing grammatical errors is to assign a transformation label to each token in
a sentence, so that after all transformations are done, the correct version of the sentence is obtained
(Omelianchuk et al., 2020; Mesham et al., 2023). This approach takes into account the fact that GEC
does not change most tokens in sentences, unlike ordinary MT.

Recent approaches involve Large Language Models (LLMs). In (Kaneko and Okazaki, 2023) develop
the idea of GEC saving most tokens in the sentence by making large language models generate edit spans
and corrections instead of the whole target sentence:

Source sentence: Through thousands of years.
Target sentence: Through the thousands of years.
Target response: (1,1, ‘‘the’’)

One of the pointed out limitations is that the models are unable to generate responses in the given format
without instruction tuning, i.e. in zero-shot or few-shot settings. However, this method allows to optimize
inference time and cost.

In (Omelianchuk et al., 2024) LLMs in a zero-shot setting, finetuned LLMs, sequence-to-sequence
models and edit-based models are compared on the GEC task and it is noted that, on the one hand, LLMs
have a higher recall due to the greater creativity, which, on the other hand, leads to hypercorrection
effects. They observe no obvious leader among GEC models of different type. While LLMs have the
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highest recall, the highest precision is achieved by a much smaller model from (Sorokin, 2022). This
model is a two-staged edit-based pipeline, consisting of edit generator and edit reranker, and presents
current SOTA results for the Russian language. As GEC models of various type differ in strengths and
weaknesses, they may be complementary, that is why, the authors of (Omelianchuk et al., 2024) propose
their ensembling. As a result, a simple majority voting of best single-model systems yields even better
results for English. They assume that majority voting enables to minimize noisy edits that are inconsistent
among models, while elevating reliable edits, which makes it a fruitful approach to GEC.

3 Model description

3.1 GECTOR
In this subsection we briefly describe the original GECTOR model. For more information, we recom-
mend to follow the source paper (Omelianchuk et al., 2020). In this paper authors consider gram-
matical error correction as prediction of word-level edits, corresponding to insertion, deletion and re-
placement operations (KEEP stands for keeping the source word unchanged). REPLACE_X corres-
ponds to replacing current word with another word 𝑋𝑋 , APPEND_X – to insertion of 𝑋𝑋 after the cur-
rent word and DELETE – to word deletion. In addition to these basic transformations, task-specific
g-transformations are introduced. They include noun number and verb form change, for example, when
a tag $VERB_FORM_VBZ_VBN is predicted, it means changing the 3rd person form of a verb, e. g.
pushes, to its past tense form pushed. These transformations are implemented using a morphological
dictionary. Besides inflection labels, several other operations are used, such as changing word capital-
ization and merging two adjacent forms. The described label system cannot handle changing a word
and adding another token (e. g., a comma) after it simultaneously. This issue is solved using iterative
approach, when the model output is passed again as input until only KEEP labels are predicted.

The proposed labeling allows to formalize GEC as sequence labeling. Consequently, the task is solved
by finetuning any pretrained encoder on the task of label prediction. This allowed (Omelianchuk et al.,
2020) to reach SOTA level for English in 2020. Moreover, sequence labeling is much cheaper than
encoder-decoder architectures for training and inference.

3.2 Label inventory for Russian
The advantages mentioned above make GECTOR a promising approach for other languages as well.
However, the only language GECTOR was adapted to is Chinese (Zhang et al., 2022). The key problem
is morphological complexity: for a language with a large number of grammatical categories the number
of g-transformations grows exponentially. Also, designing a set of labels for a morphologically complex
language requires additional effort besides pure enumeration.

We refer to the Figure 1 for the description of label extraction. To implement it, we developed an al-
gorithm of linguistic alignment, which is a modification of Levenshtein distance algorithm that has penal-
ties for different lemmas and parts of speech and also accounts for merged-separate-hyphenated spelling
of words. In order to obtain lemmas, parts of speech and morphological features, Spacy(Honnibal et al.,
2020) was used.

In the English GECTOR model, a relatively large label set of 5000 operations is used. The majority
of them consists of REPLACE_X labels corresponding, in particular, to spelling errors. To reduce vocab-
ulary size and make model learning easier, we predict a dedicated SPELL tag for spelling errors. Their
corrections are generated in the postprocessing phase, see Subsection 3.4 below.

3.3 Model architecture changes
As was already mentioned, the original GECTOR model cannot handle word modification and inserting
another word after it in one step, decomposing edit process to multiple phases, see Table 1. In preliminary
experiments we found the iterative editing suboptimal and decided to implement word insertion via
INSERT operations applied to spaces between words, not APPEND tags. Our scheme is illustrated in the
Figure 2. More precisely, we modified the conventional token classification task so that labels would be
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Figure 1: Our preprocessing pipeline. 1. Collecting a grammatical variant of source sentence, using error
indices and corrections from annotation units. Source sentence is highlighted with light red, while target
sentence – with light green. 2. Both sentences are passed through the morphological parser and linguistic
alignment algorithm. As a result, pairs of corresponding tokens are gathered (word columns highlighted
with emerald) as well as their morphological features and lemmas. 3. Adopting the information collected
during the step 2, rules assign each token in the source text an operation label, so that if all operations are
implemented, the source text would be transformed into the target sentence. E.g. in the given sentence
only three non-KEEP operations are required: correcting a spelling error in prectavleniya, inserting o after
it and changing case of noun dyr to locative. N.B. KEEP is replaced with OK in the figure for illustrative
purposes.

Iter. Source Labels Result
1 CLS Boy fall the floor APPEND_The LOWER VBD KEEP KEEP The boy fell the floor
1 CLS The boy fell the floor KEEP KEEP KEEP APPEND_on KEEP KEEP The boy fell on the floor

Table 1: An example of iterative GECToR labeling and corresponding sentence edits.

predicted not only for subtokens1, but also for spaces between them. Several decisions had to be made
for it to be possible.

Firstly, determining how to represent tokens and spaces. It is not evident, at first glance, whether using
the first or the last subtoken of tokens would be the optimal way to represent them in GEC, as various
error types may be encountered both in the beginning and in the end of the word form, e.g. spelling
errors are frequently made within the stem, whereas grammatical errors primarily affect inflections. For
implementation considerations, we decided to use the embeddings of first subtokens as the representa-
tions of tokens. As for the spaces between the tokens, we chose as their representation the average of the
immediate preceding and following embeddings.

Secondly, finding a convenient way of implementing this approach. We adopted the following strategy:
after the tokenization, two numeral masks are created. The process is reflected as step 2 in Figure 2: light
yellow mask (left-mask or LM) and light purple mask (right-mask or RM). They have the same length of
2𝑛𝑛+ 1, where 𝑛𝑛 is a number of tokens in a source sentence. It accounts for all tokens, spaces after them
and a space in the beginning as an insertion may be there as well. Numbers in dark green font represent
spaces, whereas others (in dark brown font) – tokens. LM contains indices of first subtokens of tokens
and of spaces’ immediate preceding subtokens. RM consists of the former and of spaces’ immediate
following subtokens. For each of the 2𝑛𝑛 + 1 spaces and tokens, a pair of left index and right index
would become available: for tokens they would be expressed by the same number, whereas for spaces –
by the indices of surrounding left and right subtokens. Afterwards, when a tokenized sentence is passed

1We use subtokens for units after the tokenization, as they may represent parts of tokens – symbols, word forms or punctu-
ation marks.

Nasyrova R., Sorokin A.

4



through an encoder (ruRoberta-large2 in our case) and subtoken embeddings are obtained (step 3), masks
are used to select only the embeddings of corresponding subtokens, consequently, there are two sets of
embeddings: for subtokens 1) from LM and 2) from RM, which are then being averaged (step 4). As
a result, 2𝑛𝑛 + 1 embeddings are extracted, every second one corresponds to the token in a source text,
others – to the spaces for insertions. Token embeddings are first subtoken embeddings, while space
embeddings are the averages of surrounding subtokens’ embeddings.

Thirdly, our preliminary research showed that models tend to confuse labels for spaces with labels
for tokens, that is why another modification was added. We decided to add trainable embeddings of
token type, representing spaces or tokens, and combine them (step 5) with subtoken embeddings from
the previous step, effectively solving the issue.

Figure 2: Our model pipeline.

3.4 Edit postprocessing
After predicting the labels, the corresponding output words are inferred. For grammatical labels we
utilize the pymorphy2 library(Korobov, 2015) and its inflect method that allows to predict any inflected
form of a word given the morphological features of the inflected word. In order to apply this function,

2https://huggingface.co/ai-forever/ruRoberta-large

5

An adaptation of sequence labeling approach to Grammatical Error Correction for Russian language



“Дорогая модель, тебе будут даны слова с опечатками, в скобках будет указано
предложение, в котором они встретились. Пожалуйста, выведи исправления этих слов в
том же порядке, но без предложения в скобках и каких-либо комментариев, начиная со

слова "Ответ:".”

Figure 3: The prompt for spelling errors correction.

we manually convert Conll-U morphological labels predicted by the parser to the Pymorphy format.
For spelling labels we use the external API, namely YandexGPT. We replace the words, preliminarily

labeled with SPELL by the SPELL token and pass both source and the tagged sentence using the prompt
given in Figure3. We decided to use a large language model instead of local spellcheckers since one needs
to select among several possible corrections and traditional models do not provide such possibility.

4 Model evaluation

4.1 Data for training and evaluation
Five existing Russian GEC datasets were used in the experiments: RULEC-GEC(Rozovskaya and Roth,
2019), RU-Lang8(Trinh and Rozovskaya, 2021), GERA(Sorokin and Nasyrova, 2024), RLC-GEC and
RLC-Crowd((Kosakin et al., 2024)).

• RULEC-GEC is a subset of the RULEC Corpus(Alsufieva et al., 2012) that contains essays of 12
learners of Russian as a foreign language and 5 heritage speakers.

• RU-Lang8 is the Russian learner subset of Lang-8 Corpus(Mizumoto et al., 2012), which includes
small texts produced by speakers of more than 34 languages. Only validation and test samples
of RU-Lang8 were manually re-annotated, while training data remains noisy, so the usage of this
corpus in our experiments is reduced to these partitions.

• GERA is based on Russian middle school essays, representing the only source of Russian native
speakers’ errors.

• RLC-GEC and RLC-Crowd are derived from the Russian Learner Corpus (RLC)(Rakhilina et al.,
2016), consisting of texts written by college and university learners of the Russian language from
different countries. The former dataset is the subset of RLC which contains annotated corrections,
whereas the latter consists of crowdsourced annotations.

Datasets vary greatly in error distribution and size, see Table 2 and Table 3, respectfully. While spelling
errors are the most prominent in RULEC-GEC and RU-Lang8, in GERA corrections of punctuation
form the largest share. The RLC dataset is the only one that has lexical choice errors as most common.
Additionally, unlike the “heritage subset” of RULEC-GEC, RU-Lang8 and GERA, punctuation errors do
not occur among the 4 most common error types in the RLC dataset, which, in ins turn, has a much larger
fraction of syntactic errors than other corpora. However, the main difference between the datasets lies
in the order of the most frequent errors, while the categories mainly remain the same: spelling, lexical
choice and noun case errors.

RULEC-GEC
(learners)

RULEC-GEC
(heritage)

RU-Lang8 GERA RLC dataset

Spell (18.6) Spell (42.4) Spell (19.2) Punct (42.5) Lex. (19.7)
Noun:Case (14.0) Punct (22.9) Noun:Case (12.6) Spell (23.6) Spell (15.8)
Lex. (13.3) Noun:Case (7.8) Lex. (11.6) Lex (13.6) Syntax (13.8)
Lack (8.9) Lex. (5.5) Punct (10.3) Noun:Case (5.1) Noun:Case (8.3)

Table 2: Top-4 most common errors in Russian GEC datasets. The data for the first three columns is
obtained from (Trinh and Rozovskaya, 2021), statistics for GERA and the RLC dataset are adopted from
(Sorokin and Nasyrova, 2024) and (Kosakin et al., 2024). “Lex.” stands for lexical choice errors.
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RULEC-GEC RU-Lang8 GERA RLC Dataset
Size (sentences) 12,480 4,412 6,681 31,519 (GEC), 34,150 (Crowd)

Table 3: Quantitative comparison of Russian GEC datasets.

Based on this comparison, we assumed that the datasets would be complementary for the model train-
ing, that is, the combination of GERA with RULEC-GEC and RU-Lang8 would be beneficial for the
correction of spelling and punctuation errors, while adding RLC datasets to them would facilitate the
correction of lexical and grammatical errors and improve the correction of misspellings even further.

We evaluate our model on the test partitions of RULEC-GEC, RU-Lang8 and GERA. Firstly, we train
the models on the concatenation of the first three datasets and synthetic samples, containing either 50K,
234K or 1M samples. Afterwards we finetune the model on the dataset in question until convergence
and select the best checkpoint according to the metrics on the validation set. Synthetic data is obtained
using random corruptions such as word insertion, replacement or deletion, changing the word form,
switching adjacent words etc., following (Sorokin, 2022). The frequencies of different errors mimics
their distribution in the training subsets of the evaluation datasets.

Moreover, we conducted several experiments, using RLC-GEC and RLC-Crowd datasets in addition
to RULEC-GEC, RU-Lang8, GERA and synthetic data during the pretraining stage. Then we repeated
the same finetuning, as was described above.

4.2 Model comparison
We compare our model with several methods. The first approach is supervised finetuning of large lan-
guage models. For comparison we select two 7B models: the well-known multilingual Qwen2.5-7B
Instruct model and T-Lite 1.0 that was obtained by further training of Qwen2.5-7B on Russian data.
For all the models we use the same training procedure as for GECTOR. We pretrain the models on the
concatenation of the datasets using learning rate of 1e-5 and batch size of 32 and finetune them on the
dataset in question with batch size 1e-6. All other training parameters are set to default.

We also include in our comparison state-of-the-art methods from the previous works, such as the
Transformer encoder-decoder model(Náplava and Straka, 2019) and reranking approach of (Sorokin,
2022). The latter method performs in two phases, creating a candidate pool of errors on the first stage
and reranking the generated errors using a binary classifier on the second. The candidates are generated
either using rules or applying a generative ruGPT model. All the results of these methods are taken from
the corresponding papers. We measure model quality using M2scorer(Dahlmeier et al., 2013) and report
F0.5 score as the main metric. Evaluation results are provided in Table 4.

Model RULEC-GEC RU-Lang8 GERA
Transformer 63.3/27.5/50.21 55.3/28.5/46.52 NA
ruGPT 65.7/25.4/51.33 NA 66.5/ 28.6/52.64

ruGPT+rerank 73.7/27.3/55.03 NA 78.4/44.4/68.04

Qwen 7B 60.2/32.6/51.5 60.2/36.7/53.4 74.3/48.2/67.1
T-lite 61.0/35.2/53.2 62.5/40.4/56.3 76.3/49.4/68.8
GECTOR synth50K 66.3/18.5/43.7 57.5/25.6/45.1 72.6/46.0/65.1
GECTOR synth1M 61.6/22.5/45.7 59,0/28.8/48.8 75.6/46.5/67.2
rules+ranker 66.5/28.6/52.63 70.5/29.1/54.84 86.9/42.9/71.64

GECTOR synth234K+RLC 68.3/22.6/48.7 62.9/31.3/52.3 78.2/49.1/69.9

Table 4: Results on RULEC-GEC, RU-Lang8 and GERA datasets. Our models are GECTOR synth50K,
GECTOR synth1M and GECTOR synth234K+RLC. Each cell contains precision, recall and F0.5 values.
The sources are 1 –(Náplava and Straka, 2019), 2 –(Trinh and Rozovskaya, 2021), 3 –(Sorokin, 2022), 4

–(Sorokin and Nasyrova, 2024)

We observe that GECTOR pretrained on 234K synthetic samples and RLC datasets (apart from
RULEC-GEC, RU-Lang8 and GERA) is our most effective solution, outperforming the variations pre-
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trained on less or more synthetic data without the addition of RLC, which proves the vital role of large
amounts of diverse natural data for the success of this approach. GECTOR synth234K+RLC demon-
strates impressive results on GERA, performing better than large language models, despite having 20
times less parameters, yet falls 1.7 points behind the SOTA Russian GEC model (rules+ranker), mostly
due to a colossal gap in precision.

However, as for the other two datasets, it performs much worse as compared to both large models and
the two-staged pipeline, mainly suffering from poor recall. We think there are two possible explanations:
firstly, most of errors corrected by GECTOR can be generated by a rule-based generator. Therefore, the
performance of these two methods is also correlated. As shown in (Sorokin and Nasyrova, 2024), the
rule-based generator outperforms the GPT-based one on GERA, consequently, the error distribution of
this corpus is the most suitable for the sequence labeling approach. We assume it is caused by the large
number of punctuation errors in GERA. Secondly, the inflection correction stage of GECTOR strongly
depends on the accuracy of morphological analysis. Since RULEC-GEC and RU-Lang8 consist of L2
texts, that is, learner errors which considerably vary, the quality of taggers trained on standard corpora
significantly decreases when they are applied to out-of-domain texts.

In Table 5 we compare the most frequent error categories in GERA and RULEC-GEC and the quality
of our models on them, as these are the datasets on which our model performs the best and the worst. The
main difference between the two corpora lies in the lower frequency of punctuation errors and the higher
frequency of lexical and grammatical errors in RULEC-GEC as opposed to GERA. On RULEC-GEC
we also observe a significant decrease both in precision and recall for punctuation and case mistakes and
suppose that the main reason for this is inconsistent annotation of such errors in RULEC-GEC. GECTOR
expectedly struggles with lexical errors since due to the structure of vocabulary the model can insert only
the most frequent words, making free rewriting impossible in principle.

Category Corpus without RLC with RLC fraction
P R F0.5 P R F0.5

PUNCT GERA 79.0 69.2 76.8 75.5 70.4 74.4 39.2
RULEC 57.1 4.4 16.7 55.1 7.8 24.9 10.4

S:ORTH GERA 83.0 56.4 75.9 84.6 56.4 76.9 22.2
RULEC 73.8 53.9 68.7 72.7 45.2 64.8 19.7

L:OTHER GERA 25.0 4.5 13.1 18.2 3.9 10.5 14.2
RULEC 37.8 4.1 14.3 35.1 3.2 11.8 23.5

G:NOUN:CASE GERA 68.8 43.8 63.2 71.8 40.6 62.2 6.3
RULEC 74.5 40.5 63.8 73.6 42.6 64.3 13.5

S:LETTER:CASE GERA 89.5 61.8 82.1 78.6 60.0 74.0 5.0
RULEC 12.1 26.7 13.6 13.3 26.7 14.8 0.3

LACK GERA 18.2 4.9 11.8 14.3 4.9 10.3 3.7
RULEC 29.4 2.0 7.8 42.6 4.5 15.9 9.6

Table 5: Results of GECTOR synth1M on GERA and RULEC-GEC corpora for main error categories.

In Table 5 we also compare two variants of our model: the one pretraining on all 4 Russian GEC
corpora and the variant without RLC pretraining. The results of comparison are indecisive: on GERA
adding high-quality RLC data leads to consistent improvement over all error categories, while the effect
on RULEC is less pronounced. Additionally, as training on RLC provides better improvement than
adding more synthetic data, we conclude that GECTOR requires substantial amounts of natural data,
not only synthetics. Without variable natural errors, its label vocabulary becomes too small to cover all
possible mistakes, especially in lexics. Comparing to the English model of (Omelianchuk et al., 2020),
their label vocabulary was an order of magnitude larger including about 5000 purely lexical operations,
such as inserting or replacing with a particular word. Our research implies that several tens of sentences
are not enough to learn such errors on Russian material.
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5 Conclusion

We developed a sequence tagging approach to grammatical error correction of Russian, presenting novel
methodology of preprocession and model architecture for Russian GEC. We investigated different pre-
training setups depending on the size of synthetic data and adopting datasets with distinct error distribu-
tions. We found the combination of diverse natural data coming from both learners and native speakers
of Russian with medium-sized synthetic data to be the most fruitful one. Our method outperforms lar-
ger language models on the GERA dataset but falls behind generative models on two other corpora that
require more extensive rewriting. However, our approach can be viable in situations when efficiency is
more important than quality and more strict control achieved by tagging is desirable. As a future dir-
ection, we plan to combine tagging approach with larger language models, analogous to (Kaneko and
Okazaki, 2023).
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