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Abstract

The natural language inference system allows the robot to go from the meaning of the incoming text (from a
visual or tactile stimulus) to the derived meaning—the inference. This system uses a rule-based parser, and pairs of
semantic representations constructed by the parser are combined into a scenario. In this paper, we represent the robot’s
natural language inference space as a graph, where the robot can move from the premise of a scenario to the conse-
quence, and from the consequence of one scenario to the premise of another. We involve annotators who propose
derived sentences (semantic components) for a given premise and, in the annotator interface, immediately evaluate
the proximity of the proposed sentence to the available scenarios. This procedure allows us to develop the graph of
scenarios, to evaluate its connectivity and the absence of dead ends (deadlock vertices), as well as the adequacy of
the analysis of incoming texts by scenarios within this graph. The graph contains 5,000 scenarios and approximately
22,000 nodes. We estimate that a graph consisting of 7,000 scenarios can be sufficient for modelling the mechanism
of human natural language reasoning.
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AHHOTAIUSA

CucremMa ecTeCTBEHHO-SI3bIKOBOTO BBIBOJIA MO3BOJISIET POOOTY HEPEHTH OT CMBICIA IOCTYIHUBLIETO TEKCTa (OT
BU3YaJIHOTO WJIM TAKTUIILHOTO CTHMYJIA) K IPOU3BOHOMY CMbICITy — BbIBOAY. JlaHHAsl CHCTEMa HCIIOJIB3YeT napeep,
OCHOBaHHBIf Ha IIPaBUJIAX, @ HaPbl CEMAHTUYECKUX MPE/ICTABICHHUH, IOCTPOCHHBIX ITAPCEPOM, OOBEUHSIOTCS B Clie-
Hapuil. B paboTe MBI IIpencTaBiIseM MPOCTPAHCTBO €CTECTBEHHO-I3BIKOBOTO BBIBOZIA poboTa Kak rpad, rae podot
MOXKET IepPEHTH OT MOCHUIKY CLEHAPUS K €ro CIEICTBUIO, a TAKXKe OT CJICJCTBHS OIHOTO CLEHAPUS — K ITOCHUIKE
Jpyroro. Mbl pUBJIeKaeM Pa3METYHKOB, KOTOPbIE IpeJIaraloT MPOU3BOAHBIC NPEIOKEH s (KOMIIOHEHTBI CMBICIIA)
JUIsL HEKOTOPOH MOCBUIKM U B HHTep(delice pa3METUYHKOB cpa3y XKe OLCHUBAIOT OJIM30CTh MPEUIOKEHHOTO TPEIIoKe-
HHS K MMEIOIMMCS CLIeHapUsM. JTa NpoLeaypa I03BOJISeT HaM Pa3BUBaTh Ipady CLIEHapUEB, OLEHUBATh €TI0 CBS3-
HOCTb M OTCYTCTBHE B HEM TYNHUKOB (BHCSYMX BEpIIHH), a TAKKE aJeKBATHOCTh aHAJIN3a BXOIINX TEKCTOB C IIOMO-
IIpI0 CLIEHApHEB B cocTaBe MaHHOTO Trpada. I'pad comepsxut 5000 cuenapueB u oxono 22 000 y3mos. [lo Hammm
oneHkam, rpad, cocrosmuiit u3 7000 crieHapueB, MOXKET CUUTATHCS TOCTATOYHBIM JAJIsI MOACTHPOBAHUS MEXaHU3Ma
€CTECTBEHHO-3bIKOBOTO PACCYKICHHS YeIOBEKa.

KonroueBsbie cji0Ba: poOOT-KOMIIAaHEOH, SMOIMOHAIBHAS POOOTOTEXHUKA, KOTHUTHBHBIE MOJIENH, TOACPKaHUe
JIMAJIOTa, YeJIOBEKO-MAaIINHHOE B3aNMOJICHCTBHE

1 Introduction

Despite the significant progress of ‘large language models’ (LLMs) in the task of text generation [1],
these models are relatively poorly applied to the modelling of reasoning [2]. At their core, LLMs aim to
reconstruct the next word of a text based on a context window, so LLMs are usually improved by ex-
panding the context window and by enlarging the training text database. Classical artificial intelligence
models oriented towards problem solving or text understanding had a different architecture: they used
an enumeration of paths in the problem space [3] or in the space of storylines [4]. To overcome these
limitations of LLMs and to create the so-called Large Reasoning Models (LRM), Chain-of-Thought
methods are proposed, where the solution of the problem is performed in several steps: each step is
provided by a LLM, but the results of each step can be added to the solution protocol or combined with
each other for the next step of the LLM operation [5].

At the same time, there is a relevant task to design a reasoning process, where intermediate represen-
tations are connected by a more compact mechanism that does not use LLMSs. In classical models such
as SOAR [3,4] and CogAff [5], such a transition between two representations has been described in
terms of productions or scenarios. An individual scenario relates a typical stimulus (premise) to a pos-
sible consequence and allows the cognitive model (robot) to move in its reasoning process from the
current situation to the inferred situation, thus reconstructing the context of the received message or
making plans for actions in the environment. The aim of our work is to create a companion robot and to
develop a cognitive model for the robot that allows it to mimic various cognitive functions when inter-
acting with humans. These are primarily planning and discussing of actions in the real world [6], as well
as the robot’s ability for natural language inference. An example of interaction with the robot using
natural language inference is shown in Figure 1.

Following the CogAff model, the robot constructs possible causes and effects from an incoming
event', and then evaluates these derived meanings according to their emotionality (significance). In
future versions of the system, this should allow the agent to plan its communicative or actual activity in
such a way that it approaches positive situations and avoids or compensates for negative situations, e.g.,
to evaluate the situation ‘robot is well fed’ as positive and ‘robot was sick’ as negative. In the current
version (Figure 1), the robot reports all the possible causes and effects in the dialogue based on the
incoming utterance, without considering their significance. In this paper we present a scenario architec-
ture for the natural language inference mechanism for companion robots.

! For the purposes of this paper, text messages are considered as incoming events, but these events can also be
visual or tactile, which are constructed by the vision system or the touch registration system, respectively.
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P 0: o
- (a) omb3oBarens: Pobom nun uail.

(User: The robot was drinking tea.)

Pobot: Pobom nun uaii. Pobom nanun uaii 6
yauxy. Pobom 3aeapun uaii. Pobom eckxunsamui
mepmoc. Pobom naceimusics.

(Robot: The robot was drinking tea. The robot
poured tea into the cup. The robot made the tea.
The robot boiled the thermos.* The robot is well
fed.)

(b) Ioms3oBarenb: Pobom nui 600KY.

(User: The robot was drinking vodka.)

PoGot: Pobom nun 6éooky. Kmo-mo muna yeo-
cmumb poboma 600kotl. Pobom kynun 6ooxy. Po-
bom Hanun 600Ky k cmonke. Pobom onvanen. Po-
oom ompasuncs. Townuno poboma. Pobom 6y-
xarn.

(Robot: The robot was drinking vodka. Someone
like to give vodka to the robot. The robot bought
vodka. The robot poured vodka by the shot of glass.
The robot got drunk. The robot got poisoned. The
robot was sick. The robot was drinking.)

po6oT nuA yaii

Figure 1: Interaction with the companion robot controlled by the natural language inference system.
The video is available in the repository [7].

2 Semantic parser

The basic data block for the scenario system is the semantic representation. The semantic representation
of an individual sentence clause contains the valencies for the actants: agent — ag, patient — pat, instru-
ment — instr etc.®, as well as the semantic markers for each actant. This semantic representation for an
incoming utterance is built by the parser [8,9]. For visual and tactile events, the semantic representations
are similar to the text semantics — but without homonymy (are unambiguous) [10,11].

The semantic parser follows the three-level linguistic architecture of Meaning-to-Text Theory [12]
and consists of morphological, syntactic and semantic components. The morphological component
includes a vocabulary of 100,000 lexemes (about 1.5 million word forms) based on the OpenCorpora
dictionary [13]. The dictionary lexemes are annotated with semantic markers. During the text analysis,
the markers of each word are copied to the semantic valency that the word occupies in the syntactic tree.
The markers of the verb are copied to the valency p (predicate). In the syntactic component, we use a
left-to-right parser. Segments of a sentence (words) are sequentially placed on a stack for syntactic pars-
ing, with a morphological annotation assigned to each segment. For each homonymic word form, the
stack is duplicated: each copy of the stack contains a different variant of parsing for the homonymic
segment. The syntactic component compares the top of the stack with the Russian language grammar,
which consists of approximately 800 syntXML rules [14]. If the sequence of segments on the stack
meets the requirements of a syntactic rule, then a syntactic link is established between these words. If
the syntactic relation can be established ambiguously (in the case of syntactic homonymy), the stack is
also duplicated, and a different syntactic relation is established in each copy of the stack. By the end of
the sentence, a stack with successful parsing should collapse into a syntactic tree with a single root. The
parser then builds a semantic representation for each successful stack (Figure 2). The simultaneous pro-
cessing of multiple stacks* outputs a set of syntax trees from the syntax component, and then each se-
mantic predication is matched to the scenarios: i.e. the most regular semantics for the sentence is selected

2 Semantic or syntactic errors in utterance synthesis in Russian are underlined.

3 An inventory of 24 valency types is used, based on [21].

4 The number of homonymous stacks is usually limited to 256 or 512 units. On each step the stacks are evaluated
and only a limited number of “best” stacks is preserved for further analysis.
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as better matching to the regular situations — scenarios. The parallel processing of speech ambiguity also
allows us to approach the problems of ambiguous representations, such as computer humor, computer
imagination and the theory of mind [15].

The man

7 poured tea
into the cup

1,45 LOG JSON ->

drink mme G566
ASpc: impf .
ASp : mp Starting : :
TRns: tran predicate Final predicate
POST: VERB structure ;‘t;uctur‘es
Snom-ag: 1-Snom-ag (premise) (inferences)
Sacc-pat: 1-Sacc-pat ) The man
pat: 1-pat - } is well fed
ag: 1-ag
VERB: VFIN
ie-f: mase R-scenario
NMbr: sing
TEns: past
MOod: i -
00d: inde drink man tea
GNdr: Ms-f
Semval: p p :nuTh :2 ag :uvenosek : 1 pat :uvai :3
VP: VP
SyntF: SENT 115 ng-nute (266) 115 y-vekTo (1) 11 7 yc-oanH (71)
PIErs' 3per 11 5 $nuTb_3566:1992 (5772) 11 7 4c-oauH (71 11 7 o-06 (14)
ANim: anim 11 7 s-rpam-npowepwee (8064) 11 7 4-npusHak (369) 11 7 o-epa (198)
patit-NMbr: sing 11 7 n-acceptus (806 11 7 @«eHunHa_NOUN (1337) 11 7 o4-yacTb-pacTeHus (308)
patit-Ms-f: masc 11 7 nd-unrect (2 11 8 @29_NOUN (3093) 11 7 @kywaHbe_NOUN (1637

patit-GNdr: Ms-f 11 7 @orxnébeisate_VERB (3986) 11 8 @154_NOUN (2943)
11 8 @75_VERB (4755)

man wuenosek (5954) 1 waii (59342 tea
POST: NOUN POST: NOUN pf-drink, per-person, num-one,
ANim: anim ANim: inan $drink_3566:1992, num-single, o-object,
Ms-f: masc Ms-f: masc past-tense, per-feature, o-food,
GNdr: Ms-f GNdr: Ms-f i-assertive, @woman_NOUN, o-part-of-plants,
NMbr: sing NMbr: sing pf-ingest, @29_NOUN @food_NOUN,
CAse: nomn Case: accs @drink_VERB, @154_NOUN
Semval: ag Semval: pat @75_VERB
PErs: 3per PErs: 3per
Syntactic representation Semantic representation

Figure 2: Syntactic tree and semantic representation for the utterance a man drinks tea, and its
comparison with the premise (initial predicate structure) of the closest scenario. M' is the initial
predicate structure, M" are the final predicate structures of the scenario.

As can be seen in Figure 2, the semantic representation is a set of valencies (p, ag, pat), where each
valency is filled with markers of the corresponding lexeme. Unlike word2vec semantic vector models,
we use markers from a fixed inventory (about 13,000 items), with an average of four markers’ assigned
to individual words in the dictionary. We use several methods to construct the marker inventory:
(a) markers based on the categories of Shvedova’s Semantic Dictionary, e.g. per-person [16], (b) mark-
ers based on emotional markup [17], (c) markers based on clustering of word2vec vectors, e.g.,
@drink_VERB and @food NOUN®, and (d) markers based on synsets, e.g., $drink 3566:19927. A word
may be homonymous, in which case the word has different meanings 1:1, 1:2, 1:3, ..., 2:1, 2:2, 2:3, etc.
Different semantic markers can be assigned to each of the meanings®. The same feature may have dif-
ferent weight (rank) ° for different words.

In order to determine the correspondence between the incoming semantic representation and the sce-
nario premise, a proximity measure is calculated that takes into account the coincidence of markers in

5 For 83,000 lexemes from the dictionary, 318,000 links were established with markers from a dictionary of 8,500
features. Thus, each word has 3.91 features.

6 Marker names are chosen automatically by the closest word to the cluster center. So, @ man corresponds to the
class @woman_NOUN. Here the marker name represents a member of the category, not a hypernym, and should
be interpreted as ‘a woman and similar entities’. This procedure is described in more detail in [8].

7 This marker is assigned to all words of the synset drink / sip (Russian synonyms: nums, euinueéams,
nomsieueams, 1akamo, Xjiecmamo, msaHyms, nonusams). If a word is homonymic and has several meanings, the
marker is assigned to the meaning of the word that is included in the given synset.

8 In Figure 2, all lexemes are unambiguous and have only meaning 1:1.

® For example, the feature per-person (‘person’) has more weight for the noun a man than for the noun a tailor.
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the valencies. Each valency of a scenario premise contains a set of semantic markers annotated accord-
ing to their importance:
o marker_value — the weight of the marker in the scenario premise (the higher the value, the
more important is the marker).
e attr — attribute of the marker in the incoming representation (the smaller the value, the higher
is the semantic value).
For each valency, the degree of matching between the markers of the premise P and the input repre-

sentation C is calculated using a modified Jaccard measure (here Q = P N C):
__Zem
ZP\Q a+ ZQ n

where v lies in the range [0, 1]. The following normalising factors are used here. For matching mark-

v(P,Q) =

€r18s:

marker_value
In(attr + e)

n = marker_value
where e is the base of the natural logarithm. For non-matching markers:

marker_value
a =
In(attr_avg + e)

where attr_avg is the average attribute value for the corpus.
To calculate the final degree of closeness of the semantic representations, a Jaccard measure modified

as follows is used:

Zowv(P, Q)
2pW

where p lies in the range [0, 1]. Here P is the valency set in the premise, Q is the valency set present

p(P,Q) =

in both representations, w are valency weights representing their contribution to the scenario.

3 Reasoning system

The robot’s reasoning system is based on scenarios. Each scenario contains semantic representations of
two types:

(a) premise or initial predicate structure;

(b) consequence or final predicate structure (there can be from none to several structures).

If the meaning of the incoming text is close to the initial predicate structure, the scenario is triggered
and builds its final predicate structures. It is this mechanism that ensures the construction of the inferred
semantic representation ‘[previously] the robot boiled the kettle’ from the incoming utterance The robot
drinks tea. This ‘rational’ inference is provided by a system of r-scenarios (rational scenarios). Initially,
the set of r-scenarios was formed in the following way: semantic representations of diverse natural texts
(10 million clauses) were clustered, and after manual checking, about 3,000 r-scenarios (their initial
predicate structures) were formed for the approved clusters. Currently, the number of r-scenarios has
been brought to 5,300. Each scenario recognizes some typical situation in texts, for example: ‘a person’s
heart is beating’, ‘a person has a toothache’, ‘a person drinks tea’, etc. From this point of view, r-scenar-
ios are similar to FrameNet’s frame inventory [18] or Framebank government models [19]. The differ-
ence in our project is that, when the parser is running, the scenarios are automatically recognized in the
incoming texts: the closest scenario is assigned to each clause. For example, the @sick 292 VERB 1
scenario (~‘the man’s tooth hurts”) is automatically detected in the utterances:
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e [ tried to lift her up, but she couldn't, she said, ‘my back hurts.’ (proximity 0.2820)'°
o — and my throat hurts too. (proximity 0.2869)
o Svetlichnaya has been very seriously ill in recent years. (proximity 0.2120)

Attributing this scenario to statements such as Roma, we are all rooting for you and our national
team! ! is incorrect, because this situation has different causes, consequences and emotional evalua-
tions. Usually, such a misclassification indicates that the scenario system lacks a specific scenario re-
sponsible for recognizing this particular meaning ‘to root for’.

For emotional processing of incoming meaning, an inventory of d-scenarios (dominant scenarios) is
used, based on the speech influence model [17]. D-scenarios recognize emotional situations, such as
‘nobody needs me’, ‘something is being plotted against me’, ‘I feel nauseous’, or ‘everyone looks at me
with admiration’, ‘I am smarter than other robots’, ‘I am satiated’.

According to the CogAff architecture, an incoming event can be evaluated by the agent both emo-
tionally and rationally. This is ensured by the competition between d- and r-scenarios. Furthermore,
according to CogAff, the result of the agent’s reasoning can serve as the material for the next reasoning
step or as an object of emotional evaluation. In this case, the secondary emotional mechanism is acti-
vated [20]: the emotion is not triggered by the perceived stimulus, but by the reasoning result. To im-
plement this mechanism, the final predicate structures of r-scenarios are passed to the input of the model
for the next analysis step (see Figure 3).

Type P connection: output of r-scenarios can be
forwarded to the input - to construct several
steps of inference

‘ Less relevant
//l rational outputs

Output
/
7_7‘ Rational output

~ 3 Input

———_ Emotional output

J Less relevant
— —_ emotional

0 } reactions
|
|

Perception Central processor Action

Emotional processing

Figure 3: Processing of stimulus S; by the scenario system. R-scr — r-scenarios, d-scr — d-scenarios,
M' — initial predicate structures, M — final predicate structures.

10 As demonstrated further — the level 0.25 is considered as a good proximity, so values above 0.25 are excellent.
' In Russian 6ozems has at least two meanings — ‘to be sick’ and ‘to root for someone’.
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To obtain the final predicate structures for each r-scenario, i.e. semantic representations related to the
initial one, annotators were employed. We offered annotators prototypical (initial) utterances for each r-
scenario and asked them to write down new utterances denoting: (a) the antecedent situations that led to
the initial one — predicate structures of the type BEFORE, (b) the consequent situations caused by the
initial one (AFTER), and (¢) interpretations of the initial situation (INTERP) —i.e. syntactic conversions
(‘a house is built by workers’ = ‘workers build a house’) and figurative interpretations (e.g. ‘a man was
running on the field’ = ‘a man was playing football’). The annotators’ utterances in the annotation envi-
ronment were immediately parsed by the parser, which established co-referentiality '> between the act-
ants in the initial and final predicate structures (the same person who was running on the field was
playing football). The conference information was also added to the scenario, allowing the robot to
mention in derived utterances the same referents that were present in the original stimulus.

When receiving new utterances from the annotators, it is important to check whether these utterances
correspond to r-scenarios already present in the scenario apparatus. With a closed set of scenarios, each
output result corresponds to some ‘input’ — the initial predicate structure of another scenario (Figure 4),
which should allow the robot to move in its reasoning along some graph (Figure 5).

Perception Central processor Action

o
Input —4@: s °

Rational output

from the result B
of reasoning e . G
o
Input HH

(a) (b)

Figure 4: (a) stimulus S is matched to the initial predicate structure 4 of a scenario. The constructed
inference results By and B, can be mapped to the initial predicate structures C; and C», which can lead
to inferences D1, D>, D3, D4 on the next reasoning step; (b) the same reasoning mechanism can be
represented as a graph induced by the initial stimulus S.

=)
T H T

This approach allows us to construct a general graph — the robot’s natural language inference space —
in which all the inferred semantic representations (predicate structures) are reconstructed for a given
initial stimulus. The nodes of this graph correspond to the initial and final predicate structures, while the
edges correspond (a) to the links between the initial and final structures within the same scenario and
(b) to the links between different scenarios, calculated by the proximity of the final structures to the
initial structures. For example, Figure 5 shows the graph constructed from the stimulus man was drink-
ing tea at depth 3. The Figure 3 shows that an inference from r-scenarios can be matched with d-scenar-
ios: the robot can infer ‘previously someone made tea’ (and /¢ s nice that someone cares about the man!)
and ‘someone poured tea into a cup’ (and /¢ 5 nice that someone brings tea to the man!) — inferred se-
mantic representations here are constructed by r-scenarios, and emotional evaluations — by d-scenarios.

12 The annotators were instructed to repeat in their utterances the lexemes used in the initial utterance. If for the initial utterance
man drank vodka the annotator suggests the interpretation man was intoxicated, the parser establishes co-reference between
the two occurrences of the word man. If the incoming utterance robot drank vodka is matched to this scenario, the parser will
match the referent ‘robot” with the valency ‘man’ and construct the output the robot was intoxicated.
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| It's nice when people prepare something nice for you |

The man cooked dinner |

@npurotosuts_4110_VERB_1

XopoLuue-, - -4TO-TO-XOpoLuee | The man grabbed a knife

@cxsatuTb_5256_VERB_1

| Earlier, a man had made tea |

7

| Earlier, a man boiled a kettle |

@nuTb_3566_VERB_1_BEFORE_2

@nuTb_3566_VERB_1_BEFORE_3

The man poured champagne into a glass

@snuTb_7539_2102 H

------------------------ The man pecked with his nose
(Russian idiom: was sleepy)

@nu#s_3566_VERB_1
@drink_3566_VERB_1 @xneBatb_10949_2164_2

Earlier, a man poured tea into a cup -

@nuTb_3566_VERB_1_BEFORE_1

Then the man was satiated

XOpOLUMI-4YenoBek-npuHocuT-mHe-eay-PAISA

| It's nice to have food brought to you | @nutb_3566_VERB_1_AFTER_1

Figure 5: Example of a reasoning subgraph for the initial predicative structure ‘the man drank tea’
(scenario @drink 3566 VERB 1). R-scenarios are marked with “@”, d-scenarios are not. The
implications ‘the man was satiated’ and ‘the man boiled the kettle’ are misclassified by the scenarios,
which is an argument for creating a separate scenario for these representations when filling the inventory.

The work of the annotators in adding to the scenario inventory should produce such a set of scenarios
(such a natural language inference space) that fulfils a number of criteria. First, the inventory of scenar-
ios should be accurate and complete when processing real texts — each clause of the text should be
correctly matched to some scenario: proximity of the type « in Figures 3 and 4. This will allow the robot
to correctly classify the incoming stimulus and correctly select possible causes and effects for it. Second,
the inventory of scenarios should be closed: each final predicate structure should map to some initial
predicate structure: proximity of the type fin Figures 3 and 4. Then the robot will be free to develop
reasoning without stopping at representations that have no counterparts among the initial predicate struc-
tures of the scenarios.

In order to come close to meeting these requirements, during the annotators’ work the parser imme-
diately parsed each proposed utterance, compared it with the existing set of scenarios and returned the
constructed semantic representation with the closest scenarios. The annotator then had to evaluate
whether the utterance entered matched the closest scenarios suggested by the parser. Thus, the proximity
evaluation of £ was collected directly during the work of annotators. If the annotator agreed with the
proposed scenario for the entered utterance, it can be assumed that the fscenario graph has connectivity:
the robot can freely move in its reasoning from the final predicate structure proposed by the annotator
to the initial predicate structure of another scenario. If the annotator finds that none of the three closest
scenarios matches his utterance, then the £ proximity requirement is not fulfilled: among the available
scenarios there is no one that correctly classifies the input text, and this is an argument for creating a
new scenario. For example, if the parser offered the best scenario ‘the person had a toothache’ for the
annotator’s sentence the fans were rooting for the team (in Russian: were ill for the team), then a specific
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scenario should be created for the situation ‘the fans were rooting for the team’. Such scenarios were
created on the basis of the markers’ evaluations, after which the new scenario was given to the annotators
to suggest derived meanings, such as BEFORE/AFTER and INTERP.

During the last phase of annotation, 5333 new utterances for scenarios were proposed by the annota-
tors; 2484 utterances were proposed as candidates for the creation of new scenarios (some of them were
approved), for 2856 utterances we have collected evaluations of the proximity to the closest scenario.
The work on adding to the scenario inventory increased the number of nodes and edges in the scenario
graph (Figure 6a) and reduced the number of isolated nodes and connectivity components (Figure 6b).
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Figure 6: Variation of basic graph characteristics during the addition process: (a) the number of nodes
and edges of the whole graph and the largest component: steadily increasing; (b) the number of
isolated nodes and connected components decreases.

When extending the graph of the natural language inference space, a natural question is what size of
this graph is sufficient to analyze the whole collection of real texts (a-connectivity). For this purpose,
we propose to use the annotators’ evaluation: Figure 8 shows a histogram of the similarity between the
annotators’ utterances and the closest scenario where the annotator found the proposed scenario satis-
factory. The histogram shows that at a proximity of about 0.25 the annotators most often approve the
scenario as corresponding to their utterance (the level of optimal -connectivity). The main graph (Fig-
ure 7) shows the average proximity of clauses of real news texts parsed daily by the parser [9] to the
scenarios for different versions of the scenario inventory — i.e., proximity of the « type (proximity of
the semantics of real texts to scenarios). As the scenario inventory has been constantly updated and
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refined, this proximity has increased, but it still lags behind the 0.25 level that the annotators consider
optimal, according to the estimates on the histogram.

Frequency
g ] g

035+

8

Average proximity
.

weuSo3sTy AJTWIXOUd

2022-1001 20230613 20230918 20240513 2024-09.04 2024-09-09 20241127

Date

Figure 7: Average proximity of daily news text clauses to scenarios (a-connectivity); red dashed line is
the derived estimate of high B-connectivity (from the histogram of new utterances’ proximity to
scenarios on the right)

Linear extrapolation was used to estimate the number of scenarios for which a high value of optimal
proximity in text parsing would be achieved. Since the set of points X (number of scenarios at a given
point in time) and the corresponding set of points Y (average proximity to the scenarios) are known, we
can approximate a function F: Y = F(X) expressing the dependence of proximity on the number of sce-
narios. And if we extrapolate it beyond the interval X, we can estimate such X: F(X,) = 0,25. In our
case Xq = 7000 scenarios.

Conclusion

We modelled the process of human natural language reasoning as a transition from one semantic repre-
sentation to another. We represented the space of possible transitions as a graph containing about 5,000
scenarios. The involvement of annotators allows us to populate the inventory of scenarios and to evaluate
the connectivity of the overall graph within the space of the natural language reasoning. Based on our
estimates in this paper, we suggest that an inventory of approximately 7,000 scenarios would be suffi-
cient for basic modelling of human natural language inference. This estimate answers the question of
how many frames a reasonably complete semantic model should contain.

Data availability

Scenario annotation intermediate results and robot videos are available from: Scenario Inference Data
and Behavioral Protocols // OSF. March 31. doi:10.17605/0OSF.I0/9HMPS
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