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Abstract

Current approaches to automatic morpheme segmentation for the Russian language rely on machine learning,
primarily neural network methods. Among the architectures presented, the best results have been achieved using
convolutional neural networks and LSTM networks. However, the quality of automatic annotation is far from ideal,
especially when dealing with roots that were not present in the training dataset. In this work, we present a new
approach to morpheme segmentation based on fine-tuning BERT-like models. Through comparisons using two
morpheme dictionaries with different segmentation paradigms, we demonstrated the superiority of our approach
over previous ones, including when working with unfamiliar roots. The best result was achieved by fine-tuning
the RuRoBERTa-large model: when working with random words, the share of completely correct segmentations
increased from 88.5-90.8% to 92.5-93.5%, and when working with unfamiliar roots, it improved from 70.5-72.6%
to 74.9-77.2%. Error analysis of the model showed that root nests not encountered in the training dataset can be
distributed into two groups during testing: “recognizable”, meaning those for which more than 90% of the words
are correctly analyzed, and “unknown”, meaning those for which the proportion of correct segmentations is less
than 10%.
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Annoramug

AKTyaJibHbBIE [TOJIXO/bI K ABTOMATUYECKOMY ITOCTPOEHUIO MOPMEMHBIX pa360pPOB JJIsi PYCCKOI'O si3bl-
Ka ONUPAIOTCS Ha MAIIMHHOE O0YYeHNe U, B IEPBYIO 0Yepeib, HelipoceTeBbie Toaxobl. Cpeau mpeacTas-
JIEHHBIX apXUTEKTYD JIYYIINX Pe3YJIbTaTOB yJIAJOCh JOOUTHCS IPU IOMOIIN CBEPTOYHBIX HEHPOHHBIX
cereit m LSTM-cereit. Tem He MeHee, KA4ECTBO aBTOMATUYECKON Pa3METKU JAJEKO OT HIeaJIbHOrO, B
0COOEHHOCTH, ITPU paboTe ¢ KOPHSIMU, HE BCTPETUBIIMMUCS B oOy4aroreit Beibopke. B Hacrosiieir pabo-
Te MBI IIPECTABJIsIEM HOBBII TTOIXOT K MOPGEMHOMN cermeHTarmu Ha 6a3e 1006yuennst BERT-momobubix
Mojiesieii. B xojie cpaBHeHusT HAa MaTepuaJie JIByX MOPMEMHBIX CJI0BApE C PA3JTUIHON MapaIurMoi 1ie-
HEHWS MBI TPOIEMOHCTPUPOBAJIN TTPEBOCXO/ICTBO HAIIIETO MTOIX0/1a HAT TPEILIAYIIMMHI, B TOM YKCJIe, TPU
paboTe ¢ HE3HAKOMBIMHU KOPHAMH. JIydmuii pe3yabraT ObLI JJOCTUTHYT IIPHU ITOMOIIN 1000y IEeHUs MOJIe-
su RuRoBERTa-large: mpu pa6oTe co cily9aiffHBIMUA CJIOBAMH KA9eCTBO Pa3METKH BBIPOCIo ¢ 88,5-90,8%
10 92,5-93,5%, upu pabore ¢ He3HaKOMBIMEH KopHaMu — ¢ 70,5-72,6% no 74,9-77,2%. Ananns ommubok
MOJIEIN TIOKa3aJl, YTO KOPHEBbIE THE3/IA, HE BCTPETUBINMECS B OOyUarOIIeil BHIOOPKE, TTPU TECTHPOBA-
HUW PACIIPEJIEISIIOTCS HA JIBE TPYIIIBL «y3HABAEMBIE», TO €CTh TaKWe, JJiag KOTOpbix 6osee 90% cios
pa3006paHo KOPPEKTHO, M «HEM3BECTHBIE», TO €CTh TaKWe, JJIsi KOTOPBIX JIO0JIsi KOPPEKTHBIX Pa3sbopoB
coctapiser meree 10%.

KtoueBsie ciioBa: aBTOMATUIECKOE ITOCTPOEHIE MOPMEMHBIX pa3bopoB, MOpGdEMHUKA PYCCKOTO S3bI-
Ka, marmuHHOe 00yuenne, BERT
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1 Introduction

Morpheme segmentation refers to the division of a word into several morpheme substrings. Morpheme
segmentation is one of the key aspects of studying the morphology of the Russian language, allowing the
analysis of how words are formed from minimal meaningful units — roots, prefixes, suffixes, and others.
This enables a deeper understanding of the structure of words, revealing patterns in their formation and
changes. It is also in demand in the teaching of the Russian language, as many spelling rules rely on the
ability of the speaker to identify individual morphemes within a word (Kisselev et al., 2024). Morpheme
segmentation also shows promise as a subword tokenization strategy for language models. Recent studies
(e.g., (Matthews et al., 2018; Nzeyimana and Niyongabo Rubungo, 2022)) demonstrate that morpheme-
based tokenizers can outperform standard Byte-Pair Encoding (BPE) (Gage, 1994) in certain scenarios,
yielding measurable improvements in model performance. Finally, morpheme annotation is used in large
text corpora (Savchuk et al., 2024), which are employed for linguistic research, to enhance user search
capabilities.

Since morpheme segmentation can sometimes be a complex task requiring the attention of profes-
sional linguists, morpheme dictionaries are created for practical purposes, such as the Word Formation
Dictionary of the Russian Language (Tikhonov, 1990) and the Dictionary of Morphemes of the Russian
Language (Kuznetsova and Efremova, 1986). However, it cannot be claimed that such dictionaries are
comprehensive. Firstly, morpheme dictionaries typically include segmentations only for lemmata, which
is not an ideal solution for the Russian language given its rich morphological possibilities. Secondly,
the largest existing morpheme dictionaries contain around 100,000 to 150,000 lemmata, which is signi-
ficantly smaller than the overall volume of the Russian language; for example, the Main Corpus of the
Russian National Corpus (Savchuk et al., 2024) contains 200,000 to 250,000 different lemmata. A fur-
ther complication arises from the differences in the paradigms of morpheme segmentation used in these
dictionaries. Some dictionaries, such as the Word Formation Dictionary of the Russian Language, focus
on the transparency of relationships and the presence of word formation chains in modern Russian, while
others, like the Dictionary of Morphemes of the Russian Language, pay more attention to the etymology
of words and their correspondence with other lexemes of similar structure. As a result, segmentations of
the same lemma often differ across dictionaries. Additionally, authors may locally make decisions that
contradict the paradigms they declare, complicating the automatic updating of dictionaries, while manual
updates require significant regular investments of time and resources due to the emergence of new words
in the language.

In this context, approaches based on machine learning may serve as suitable tools. A number of studies
have previously been published on the Russian language (Sorokin and Kravtsova, 2018; Bolshakova and
Sapin, 2019b; Bolshakova and Sapin, 2019a; Bolshakova and Sapin, 2022; Garipov et al., 2024; Morozov
etal., 2024), which examine gradient boosting over decision trees, convolutional neural networks (CNN),
and LSTM networks, demonstrating high quality in the generated segmentations. At the same time, it was
shown (Morozov et al., 2024) that many presented algorithms perform significantly worse with words
containing roots that did not appear in the training dataset: about 90% of fully correct segmentations
for random words and around 70% for words with unfamiliar roots. Moreover, it has been demonstrated
(Sorokin, 2022) that use of embeddings from pre-trained BERT-like models can improve the perform-
ance of algorithms, including on data with unfamiliar roots. Although BERT was used in these works
only as a source of embeddings for the convolutional network, Peters and Martins showed (Peters and
Martins, 2022) that subword transformers can show good results in the task of morpheme segmentation,
including on the material of the Russian language. Thus, this raises a question: will the fine-tuning of
pre-trained Transformer-based models be effective in the task of morpheme segmentation? In this paper,
we build upon this idea and present a family of fine-tuned BERT-like models for the automatic morpheme
segmentation of the Russian language lemmata, which surpass all previously presented approaches. Our
models are available for download at https://ruscorpora.ru/license-content/neuromodels.
The increase in the proportion of fully correct segmentations reached up to 3% for random words and up
to 4.5% for words with unfamiliar roots.
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2 Related Work

Morpheme segmentation algorithms can be classified according to two criteria. The first of these cri-
teria is the type of segmentation. Two variants of segmentation are distinguished: surface and canonical
(Cotterell et al., 2016). The distinction of canonical segmentation lies in the fact that it not only in-
volves breaking a word into morphemes but also reconstructing the original form of the morpheme. For
example, for the word “funniest” the surface segmentation is funn-i-est, while the canonical segmenta-
tion is fun-y-est. The second criterion is whether the algorithm’s tasks include determining the types of
morphemes. Most studies on the Russian language focus on surface segmentation with the identifica-
tion of morpheme types. A notable exception is the SIGMORPHON 2022 competition (Batsuren et al.,
2022), in which the task of canonical segmentation was addressed without determining the type.

The most studied architecture for the Russian language is an ensemble of convolutional neural net-
works, first presented in the work (Sorokin and Kravtsova, 2018). This model operates in a character-
level BMES annotation format, where each letter is assigned a label indicating its position within the
morpheme (B for beginning, M for middle, E for end, and S for single letter morpheme) and a label
corresponding to one of seven morpheme types: ROOT, PREF (prefix), SUFF (suffix), END (ending),
POST (postfix), LINK (linking vowel), HYPH (hyphen). The quality of the model is measured using
F-score, precision, and recall for morpheme boundaries, character-level accuracy, and the proportion of
fully correct segmentations. Based on the dataset relying on the Word Formation Dictionary of the Rus-
sian Language (Tikhonov, 1990), the authors achieve approximately 87% fully correct segmentations and
about 96% correctly labeled letters. Within a series of papers (Bolshakova and Sapin, 2019a; Bolshakova
and Sapin, 2019b), this architecture was compared with models based on gradient boosting over decision
trees and with LSTM networks using two datasets: the dataset from the original paper and the CrossLex-
ica dictionary (Bolshakov, 2013). The comparison showed a slight advantage of the ensemble of three
LSTM networks over a similar ensemble of convolutional neural networks. An alternative approach
is the use of generative models. For example, at the SIGMORPHON 2022 competition, the subword
transformer DeepSPIN-3 (Peters and Martins, 2022) demonstrated the best performance across multiple
languages, including Russian. In (Morozov et al., 2024), some approaches were compared using three
datasets: one based on the Dictionary of Morphemes of the Russian Language (Kuznetsova and Efre-
mova, 1986) and the two previously mentioned, with corrections made to the annotation errors of the
morpheme types in the dataset based on the Word Formation Dictionary of the Russian Language. The
best results were demonstrated by the ensemble of convolutional neural networks. Additionally, com-
paring the algorithm’s results with expert evaluation indicated that when tested on random words, the
algorithms are close to achieving expert-level performance.

At the same time, Morozov et al. (Morozov et al., 2024) studied a key drawback of existing ap-
proaches: due to the lack of semantic consideration when dealing with roots that did not appear in the
training dataset, the quality of annotation sharply declines: around 90% fully correct segmentations
for random words, about 70% for words with unfamiliar roots for CNN and LSTM approaches. For
DeepSPIN-3 the situation is even worse: 80% correct segmentations on average and only 14% when
working with unfamiliar roots. This shortcoming can be partially addressed by enriching the feature de-
scription with embeddings from a pre-trained BERT-like model (Sorokin, 2022; Morozov et al., 2024),
but the improvement is relatively modest. Pranjic et al. (Pranji¢ et al., 2024) proposed a binary classifier
based on the Glot500 model (Imani et al., 2023) that determines the presence of a morpheme boundary
in a word at the character level. This method is difficult to consider practically significant due to the
extremely high computational costs (for a word of length N, the model needs to be run N-1 times). At
the same time, the potential of using pre-trained Transformer-based language models as an end-to-end
solution remains insufficiently explored.

3 Datasets

We used two datasets, which were previously utilized in (Garipov et al., 2024; Morozov et al., 2024):
Morphodict-T, based on the Word Formation Dictionary of the Russian Language (Tikhonov, 1990), and
Morphodict-K, based on the Dictionary of Morphemes of the Russian Language (Kuznetsova and Efre-
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Morphodict-T | Morphodict-K

Unique words 95,895 75,649
Unique morphemes 15,899 8,079
Unique roots 15,253 7,148
Average morphemes per word 3.86 4.12

Average morpheme occurrence 23.29 38.56
Average root occurrence 7.54 12.24
Average root length in symbols 5.52 4.62

Table 1: Brief characteristics of the datasets

mova, 1986). Besides differences in the vocabulary, the source dictionaries rely on different paradigms of
morpheme segmentation, resulting in a significantly higher fragmentation of morphemes in Morphodict-
K. More detailed differences between the datasets are described, for example, in (Morozov et al., 2024).
The use of the Morphodict-T dataset allows for better comparison of the obtained results with those from
the previous works that utilized a similar dataset (Sorokin and Kravtsova, 2018; Bolshakova and Sapin,
2019a; Bolshakova and Sapin, 2019b). Morphodict-K, on the other hand, enables us to verify whether
the results obtained are significantly related to the specifics of the particular dataset. This is particularly
important in our case, as we do not claim to develop a universal morpheme segmentation algorithm,
which is most likely impossible due to disagreements in defining morpheme segmentation itself (Iom-
din, 2019). However, within this study, we investigate whether it is possible to automatically extend
annotations from a specific morpheme dictionary to out-of-vocabulary words. Brief characteristics of
Morphodict-T and Morphodict-K are provided in Table 1.

4 Models and Experimental Setup

We utilized two BERT-like models pre-trained for the Russian language: RuBERT-base-cased (Kur-
atov and Arkhipov, 2019) (hereinafter referred to as RuBERT) and RuRoBERTa-large (Zmitrovich et
al., 2024) (hereinafter referred to as RuRoBERTa). The choice of these models is due to their well-
established performance and application in a wide range of practical tasks. We framed the original task
as a specific case of Named Entity Recognition: the model was provided with a sequence of letters form-
ing a word, and the task of the model was to determine the class of each letter in the sequence according
to the BMES annotation with types (an example is shown in Figure 1). We tested two options for forming
input sequences. In the first case, we provided only the letters and their classes, effectively preventing
the model’s tokenizer from functioning. In the second case, the starting element of the sequence was the
original lemma, which was assigned a special class of “0” (Figure 2). Our hypothesis was that having the
complete lemma would allow the model to take into account the semantics of the word and improve its
performance with roots that were not present in the morpheme training dataset but had been encountered
by the model during the pre-training phase. These models are further designated by the index “lex”.

We fine-tuned the models using two different methods for splitting the dataset: fully random split
of the dataset and split-by-roots, where words with the same root could not appear in different folds
(words with multiple roots were excluded from the dataset in advance). The first method of forming
folds allows for an average assessment of the model’s annotation quality, while the second one evaluates
the annotation quality when dealing with unfamiliar roots. We applied 5-fold cross-validation for a more
accurate assessment of the automatic labeling quality.

The models were fine-tuned for 30 epochs, using a learning rate of 4e-5 for RuBERT-base-cased
model and Se-6 for RuRoBERTa-large one. To assess quality, we used the metrics proposed in (Sorokin
and Kravtsova, 2018) and supplemented in (Garipov et al., 2024): F-score, precision, and recall for
morpheme boundaries (these metrics are further designated by the index “full”); F-score, precision, and
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['n', 'B-ROOT'],
['w', 'M-ROOT'],
['w', 'M-ROOT'],
['r', 'M-ROOT'],
['B', 'E-ROOT'],
JINHFBUCTUKaA ['n', 'B-SUFF'],
['c', "M-SUFF'],
['t', '"E-SUFF'],
['w', 'B-SUFF'],
['k"', '"E-SUFF'],
["a', 'S-END']
]
Figure 1: Example of input sequence
[ [
['n', 'B-ROOT'], ['nuHreucTuka', '0']
['n', '"M-ROOT'], ['n', '"B-ROOT'],
['w', '"M-ROOT'], ['w", "M-ROOT'],
['r', 'M-ROOT'], ['w', 'M-ROOT'],
['B', '"E-ROOT'], ['r', '"M-ROOT'],
['w', 'B-SUFF'], ['B', "E-ROOT'I],
['c', '"M-SUFF'], ['n', "B-SUFF'],
['t', '"E-SUFF'], ['c', "M-SUFF'I],
['n', 'B-SUFF'], ['T', 'E-SUFF'],
['k', 'E-SUFF'], ['n', 'B-SUFF'],
['a', 'S-END'] ['k', 'E-SUFF'I,
1 ['a', 'S-END']

Figure 2: Example of adding lemma to input sequence

recall for root boundaries only (these metrics are further designated by the index “root”); as well as
character-level accuracy (Accuracy) and word-level accuracy (WordAccuracy).

5 Results and Discussion

During the training process, we evaluated the quality of the models using word-level accuracy (WordAc-
curacy). In the case of the random split, the model quality changed significantly during the first few
epochs: the difference between the first and tenth epochs is 15-20 percentage points. In contrast, for the
split-by-roots mode, such an increase is not observed: the difference between the models after one epoch
of training and after 30 epochs is only 2-3 percentage points. Several examples of the dependence of
WordAccuracy on the number of epochs are shown in Figure 3.

Tables 2, 3 present the results obtained for the random split experiment using the Morphodict-T and
Morphodict-K datasets, respectively, Tables 4 and 5 show results for the split-by-root experiment. In
addition to the results for the fine-tuned models, the tables also include the results for the CNN ensemble
as the best model from (Morozov et al., 2024). Each cell contains the average metric value measured
during cross-validation, with the standard deviation indicated. The best metric value in each row is
highlighted in gray.

The results obtained from the two datasets are largely similar. In the case of the random split, BERT-
like models demonstrate higher quality than CNN ensemble, with RuRoBERTa-based models performing
better than RuBERT-based ones. The superiority of RuRoBERTa models over the ensemble of convo-
lutional neural networks is about 3 percentage points. For the RuBERT model, the one trained without
using lemmata surpasses the RuBERT}.x model in both Accuracy and WordAccuracy for both datasets.
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random split split-by-roots

== RUBERT == RUBERT (lex) RuRoBERTa == RuR0BERTa (lex) == RUBERT == RUuBERT {lex) RUuROBERTa == RUR0OBERTa (lex)
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WordAccuracy
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1 1
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Figure 3: WordAccuracy of the models during the first ten epochs of fine-tuning on the Morphodict-K

dataset
RuBERT RuBERT RuRoBERTa | RuRoBERTa| CNN
Precisiongy 98.60 £0.05 | 98.18 £0.11 | 98.57+0.17 | 98.69 +0.03 | 97.79 +0.13
Recallgy 98.67 +£0.05 | 98.324+0.07 | 98.56+0.18 | 98.84 £0.04 | 98.38 £0.06
F-scoregy) 98.63 £0.03 | 98.25+0.07 | 98.56 +0.17 | 98.76 +0.02 | 98.09 4+ 0.05
Precision;oo 95.80 +£0.11 | 94.61 £0.25 | 95.45+0.44 | 96.13£0.14 | 94.19 +0.29
Recall, oot 95.57+0.12 | 94.59+0.20 | 95.18 = 0.57 | 96.00 &+ 0.08 | 93.99 +0.21
F-score;oot 95.68 +£0.11 | 94.60£0.21 | 95.31 £0.50 | 96.07 £0.11 | 94.08 & 0.25
Accuracy 97.59+0.06 | 96.84+0.11 | 97.39+0.31 | 97.78 £ 0.05 | 96.61 +0.10
WordAccuracy | 91.77 £ 0.19 | 89.59+0.29 | 91.09 £1.01 | 92.47+£0.14 | 88.49 +0.28

Table 2: Results for the Morphodict-T dataset, random split

In the case of RuRoBERTa, this dependency does not hold: for Morphodict-T, RuRoBERTayex performs
better, while for Morphodict-K, the model qualities are nearly identical. When using the split by roots,
the superiority of RuRoBERTa-based models over the others is confirmed, with RuRoBERTaex outper-
forming the CNN ensemble by 4.5 percentage points across both datasets. It is also noteworthy that the
drop in quality between the random split and the split by roots for models using lemmata is reduced:
for CNN, the gap is about 18 percentage points, for RuBERT}; about 17.5 percentage points, and for
RuRoBERTaj, between 16.5 and 17.5 percentage points. Performance in root extraction also improved,
as evidenced by the F-score for root morphemes: for RuRoBERTa ., this metric is 1.5-2 percentage
points higher than that of the CNN ensemble.

The RuRoBERTajx models significantly outperform the CNN ensemble and RuBERT-based models.
In comparison with RuRoBERTa models, RuRoBERTaj.x models excel in the split-by-roots case, while
in the random split case, they outperform for the Morphodict-T dataset and show nearly identical results
for the Morphodict-K dataset. Therefore, the RuRoBERTaj.x models should be considered the most
promising in terms of practical application. Consequently, we conducted an analysis of the segmentations
made by these models and compared them with the previous baseline, the CNN ensemble.
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RuBERT RuBERT e« RuRoBERTa | RuRoBERTajx| CNN
Precisiongy 99.00 £0.03 | 98.68£0.09 | 99.05£0.05 | 99.04 £0.06 | 98.58+0.11
Recallgyy 99.11 £0.03 | 98.81£0.04 | 99.14£0.03 | 99.17+0.03 | 98.74 +£0.09
F-scoreq 99.05£0.02 | 98.74£0.03 | 99.09+£0.04 | 99.10+£0.04 | 98.66 £0.03
Precisionygo; 97.30+0.11 | 96.15+0.17 | 97.44£0.20 | 97.37+0.12 | 96.26 £0.13
Recallyoo 97.24+0.08 | 96.19+0.18 | 9743 £0.12 | 97.35+0.08 | 96.22 +0.12
F-scorergor 97.27+0.08 | 96.17+0.17 | 97.43£0.16 | 97.36 £0.10 | 96.24 +0.11
Accuracy 98.10£0.05 | 97.52£0.08 | 98.19+0.06 | 98.19+0.06 | 97.40+0.03
WordAccuracy | 93.39 £0.14 | 91.51 £0.24 | 93.61 £0.16 | 93.54+0.16 | 90.82 £0.13

Table 3: Results for the Morphodict-K dataset, random split

RuBERT RuBERT ¢« RuRoBERTa | RuRoBERTajx| CNN
Precisiongy 95.27+0.26 | 95.62+0.42 | 94.67£0.78 | 96.09 £ 0.34 | 94.46 +0.50
Recallgyy 93.58£0.50 | 94.33£0.35 | 95.31+£0.90 | 95.08=+£0.28 | 94.96 £ 0.45
F-scoregyn 94.424+0.32 | 94.97+0.32 | 94.98£0.18 | 95.59£0.22 | 94.71 +0.34
Precisionyo; 81.52+£0.58 | 82.47+£0.80 | 81.91+0.48 | 84.37+£0.62 | 81.96£0.73
Recall;oor 81.47+0.54 | 82.38+0.84 | 82.26 £0.28 | 84.30+0.61 | 81.98 +0.72
F-scoreroot 81.50 £0.56 | 82.42+0.82 | 82.08+0.34 | 84.34+£0.61 | 81.97£0.72
Accuracy 89.58 £0.57 | 90.61 £0.52 | 90.15£0.38 | 91.70+£0.34 | 90.16 £0.53
WordAccuracy | 69.26 £1.76 | 72.12+1.64 | 71.10+£1.36 | 74.95£1.43 | 70.53 £1.79

Table 4: Results for the Morphodict-T dataset, split by roots

Despite the lower proportion of incorrect segmentations, the remaining annotation errors in the case
of the random split exhibit a nature similar to the errors of the CNN ensemble (Morozov et al., 2024): in-
sufficient consideration of semantics by the model and difficulties in distinguishing prefixes and roots
in the case of borrowed morphemes. An example of the first type of error is the segmentation for
the adverb “nepemom” (in front): nepe:PREF/dom:ROOT, whereas the correct segmentation is ne-
ped:ROOT /om:SUFF. Tt is important to note that in the Russian language, there is both the prefix
‘mepe-’ (over) and the root ‘-nom-’ (house), which is likely the cause of the error. An example of the
second type is the segmentation of the word “npumanonna’ (primadonna, diva): although the morph-
eme boundaries are correctly annotated as npuma:ROOT/donn:ROOT /a:END (in contrast to the CNN
segmentation npu: PREF /madonn:ROOT /a:END), the type of the first morpheme in the Morphodict-
K dataset is indicated as PREF. When working with unfamiliar roots, compared to the CNN ensemble,
the most notable change is the reduction in the number of cases with excessive separation of the prefix
from the root, for example:

1. “xoomepartusi” (cooperation)

* Morphodict-K: x0:PREF /onep:ROOT /a:SUFF /y:SUFF /u:SUFF/a:END

* CNN: x0:PREF/0:PREF /nep:ROOT /a:SUFF /u:SUFF /u:SUFF /a:END

* RuRoBERTax: x0:PREF /onep:ROOT/a:SUFF /y:SUFF/u:SUFF/a:END
2. “oruuBo” (flint)

* Morphodict-K: 0en:ROOT /ue:SUFF /0o:END

* CNN: 0:PREF /enu:ROOT/6:SUFF /0:SUFF

* RuRoBERTayex: 021:ROOT /us:SUFF/0o:END

For more general conclusions, we randomly selected 50 errors made by RuRoBERTay. for each data-
set and each dataset split strategy. The analysis revealed that the most common errors were related to
root extraction: either an unnecessary prefix or suffix is included in the root, or conversely, an excessive
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| | RuBERT | RuBERT|x | RuRoBERTa | RuRoBERTaj,| CNN |
Precisiongyy | 95.50 +0.27 | 95.69 £0.33 | 95.78 £0.43 | 96.38 £0.44 | 95.35+0.33
Recallgu 94.724£0.38 | 95.13+0.35 | 94.74+0.35 | 95.81 +£0.26 | 95.04 & 0.29
F-scorefu 95.11+£0.25 | 95.41+0.26 | 95.26£0.36 | 96.09 +0.27 | 95.19 +0.27
Precisionrooy | 81.84 221 [ 82.52+£2.16 [82.37+238 | 84.95+2.01 | 82.46+2.26
Recallroo; 81.75+2.13 | 82.67+1.97 | 82.28+2.47 | 84.78+1.93 | 82.564 £2.25
F-scoreroo; 81.79+2.17 | 82.60 +£2.06 | 82.32+2.42 | 84.87+1.97 | 82.50 +2.25
Accuracy 91.13+£0.42 [ 91.674+0.50 [91.39+£0.62 [ 92.82+0.42 | 91.30 +0.47
WordAccuracy | 72.46 £1.95 | 73.99+1.71 | 73.32+2.24 | 77.17+1.96 | 72.63 £2.22

Table 5: Results for the Morphodict-K dataset, split by roots

morpheme is extracted from the root. In Morphodict-T, for the random split, there were 39 out of 50
errors regarding root boundaries, while for the split-by-roots, there were 47 out of 50. In Morphodict-K,
for the random split, there were 27 out of 50 errors regarding root boundaries, and for the split-by-roots,
there were 40 out of 50. The higher number of such errors in Morphodict-T can be attributed to the
morpheme segmentation paradigm adopted in (Tikhonov, 1990): roots are longer and more diverse, and
historical prefixes and suffixes are often included within the root, which the model fails to recognize.
Among other errors, the overwhelming majority are related to the segmentation of suffixes (e.g., -ruv-
VS -H-UM-, -uposa- VS -up-osa-, etc.). This is largely associated with inconsistent segmentation in the
datasets themselves.

We aimed to verify whether the model is indeed capable of “recognizing” unfamiliar roots or if the
distribution of errors among the roots is more random in nature. To do this, we calculated the proportion
of correctly annotated words for each root from the test set for the models trained in the split-by-roots
mode. The results are presented in the form of a histogram in Figure 4. It is easy to see that the
distributions for both datasets are similar and allow us to conclude that for the majority of roots, the
model either “recognized” the root and identifies it correctly almost always, or it “did not recognize” it
and almost always makes errors. Intermediate cases are quite rare. The question of which specific roots
the model “recognizes” and which it does not, and how they relate to the training dataset, merits further
investigation, which we plan to conduct in the future.

Morphodict-T Morphodict-K
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Figure 4: Distribution of the correct segmentations ratio for words containing a specific root
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6 Conclusion

Automatic morpheme segmentation of Russian words is a relevant applied task in natural language pro-
cessing. For a long time, the leading approaches to this task were ensembles of convolutional neural
networks and LSTM networks. However, these approaches perform significantly worse with roots that
were not present in the training dataset. In this work, we presented a family of fine-tuned BERT-like
models for automatic morpheme segmentation that demonstrate better results compared to previous ap-
proaches. The model based on RuRoBERTa, trained for character-level annotation of words with the
inclusion of the lemma in the input sequence, outperforms the convolutional neural network ensemble
by 3% on random words and by 4.5% on words with unfamiliar roots. These results were obtained using
two datasets with different paradigms of morpheme segmentation. Error analysis conducted on the best
model shows that unfamiliar roots during testing are distributed into two categories: those that the model
“recognized”, meaning that the words are correctly analyzed more than 90% of the time, and those that
the model “did not recognize”, meaning that the words are correctly analyzed less than 10% of the time.

Two main limitations of our study should be highlighted. The first pertains to the complexity of
training the model: one epoch of fine-tuning of RuRoBERTa on an NVIDIA RTX 4090 GPU took us
about 2 minutes, whereas the ensemble of convolutional networks did not require a GPU at all and trained
significantly faster. The second limitation relates to the potential application area of the models: the
datasets used contain only the lemmata of words, while practical applications often require segmentations
of word forms. Additionally, using word forms could enhance the quality of the final model. In the future,
we plan to conduct a series of experiments to expand the existing datasets with segmentations of word
forms and compare the quality of models trained solely on lemmata with those trained on the expanded
data.
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